DP7 连续子数组的最大乘积_75

该代码实现了一个C++程序,使用动态规划方法找出一串整数中连续子数组的最大乘积。程序处理了包含负数的情况,通过维护最大值dpmax和最小值dpmin来确保在遇到负数时仍能找到最大乘积。最后,程序输出最大乘积的结果。
摘要由CSDN通过智能技术生成

连续子数组的最大乘积
在这里插入图片描述
输入描述:
第一行输入一个正整数 n ,表示数组的长度
第二行输入 n 个整数,表示数组中的值。
输出描述:
输出子数组的乘积的最大值
示例1
输入:
4
3 2 -2 4
输出:
6
说明:
子数组[3,2]的乘积为6,[3,2,-1,4]的乘积为-24,[4]的乘积为4,故返回6

示例2
输入:
3
-3 0 -2
输出:
0
说明:
因为0在中间,所有包含0的子数组的乘积都为0,另外的数都是负数,所以最大乘积的子数组为[0],返回为0,因为子数组要求是连续的,所以[-3,-2]不是[-3,0,-2]的子数组,所以不能为6,

示例3
输入:
3
-3 2 -2
输出:
12
需要考虑负数的情况,详看代码注释

//动态规划
#include<bits/stdc++.h>
using namespace std;
//连续子数组最大乘积 
const int INF=INT_MAX;//定义无穷小 
long long dp[20];
long long a[200001];
int main(){
	int n;
	cin>>n;
	//n为数组长度 
	for(int i=0;i<n;i++){
		cin>>a[i];
	}
	long long maxx=-INF;
	long long dpmax=1,dpmin=1;
	//dp[i]表示由a[i]为末尾的最大连续子序列乘积
	//由于负数的情况所以要查看最大值和最小值 
	//最小值的出现是为了负数的情况 
	for(int i=0;i<n;i++){
		long long dpmax_new=max(dpmax*a[i],max(dpmin*a[i],a[i]));
		dpmin=min(dpmax*a[i],min(dpmin*a[i],a[i]));
		dpmax=dpmax_new;
		maxx=max(dpmax,maxx);
	}
	cout<<maxx;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江星竹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值