- 博客(5)
- 收藏
- 关注
原创 Datawhale组队学习打卡-Fun-transformer-Task5实战
这是学习的最后一期啦,今天在去外地过年的路上,简单跑了一下代码,把教程里代码贴在这里,感觉理解里面的公式和torch一些函数,结合教程里的代码可以试试自己手撕,希望也能帮助到要面试的小伙伴。年后我要开始为工作做准备了,争取过年期间更新两篇和实时数仓相关的学习博客,我也是第一次学,到时候欢迎小伙伴们一起讨论~
2025-01-27 14:41:29
217
原创 Datawhale组队学习打卡-Fun-transformer-Task2Transformer
深度学习是一种模拟人脑处理信息方式的方法,简单来说可以理解成像一个超多层的筛子,每一层筛选数据中更复杂的特征,可以自动提取数据中的模式和特征。教程里有一个很有意思的观点,说Attention的核心思想是“加权求和”,让模型能够根据输入的不同部分重要性,动态地调整它们在输出中的贡献。分解输入:假设你有一段话或者一组数据,计算机首先将这些输入数据分解成更小的部分(例如单词)。挑选出重要的部分:接着,计算机会查看这些部分并决定哪些部分更重要。它通过将每个部分与一个“查询”进行比较来实现这一点。分配重要性。
2025-01-19 00:12:01
1821
原创 Datawhale组队学习打卡-Fun-transformer-Task1引言
最近在跟着Datawhale一起组队学习,学的是fun-transformer,因为入职后可能也会涉及到大模型和深度学习的内容,所以对这个还蛮感兴趣的。这一篇是引言部分的学习,主要是一些基础性的介绍,我会根据学习内容结合我自己的视角讲一下Seq2Seq的目的(定义),Encoder-Decoder的模型组成和一些其他的知识。不是计算机出身,有些理解会写的比较偏向统计。有很多地方结合了李宏毅老师的课程和一些我问GPT的学习点(ps.感觉GPT真的是学习利器!
2025-01-15 18:37:25
2029
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人