Don't abandon your precaculus skills and common sense.
考點
Type of problems
1.Linear approx
2.Sketch a graph
3.max/min
4.related rates
5.antiderivative
導數
何爲導數
-
幾何定義
-
物理定義
如何求導
-
求導四則運算
-
初等函數導數
-
鏈式法則
鏈式法則是一種合成規則(Composition rule)
換元法(substitution)的英文我覺得挺有意思的,use new variable names.
這方法就是我們接下來要在隱函數求導中用到的.
-
隱函數求導
隱函數求導(implicit differentiation),顧名思義,當然是一種求導的方法,其步驟如下:
- 通過移項將含y和含x的項分別移到等式兩邊(如,將整理為 )
- 等式兩邊同時求導
- 含x的部分直接求導,含y的部分通過將轉化為,從而實現直接對y求導,再求出導數即的值
隱函數的本質,其實就是利用鏈式法則求導,僅此而已.
-
對數求導
logarithmic di-f ferentiation
求的導數.
等式兩邊同時取對數,得
兩邊對求導得
則有
Differemtiate .
-
參數方程求導
對於 若均由另一个变量确定,则有参数方程(parametric quation):
則有:
.
求橢圓
在相應的點處的切綫方程.
在時,對應的點為
而切綫斜率為
於是切綫方程為
計算由擺綫所確定的函數 的二階導數 .
-
高階導數
satisfies
導數何爲
-
最值定理
-
零點定理
Zero - point Theorem
The Zero-point Theorem, also called the existence theorem of roots, is a special case of the medium theorem of continuous function.
-
介值定理
Suppose is continuous on the closed interval and be any number between and where
Then there must be a number in such that .
-
微分中值定理
利用微分中值定理,可以證明一些不等式和恆等式.
羅爾定理
Rolle's Theorem
MVT的特殊形式.
拉格朗日中值定理(MVT)
(Lagrange) Mean Value Theorem
MVT反映了可導函數在上整體平均變化率與在内某點處的局部變化率的關係.因此,MVT是連結局部與整體的紐帶.
obviously:
由MVT可直接導出許多結論,如:
if , then:
兩個定理都强調'continuous on the closed interval'以及'differrentiable on the open interval'.
-
綫性近似
Linear approximation
Linear approximation happens all across engineering. People are looking for these linear relationshipss between the change in some input and the change in the output.
Main formulas:
該公式的幾何含義為:
假設有一條曲線,那麼它在切點處近似與其切線.
綫性近似的基本思想是以直代曲,從而簡化計算.
綫性近似必須在非常接近時才成立,因爲如果太遠離,精度就不夠高了.
-
二階近似
Use these when linear approxiamation is not enough.
一些有趣的問題:出題人會在題目中指明是綫性近似還是二階近似嗎?
事實上,使用綫性近似還是二階近似應該全憑自己判斷.
Main formulas:
-
相關變化率
related rate
相關變率表示一樣東西相對於另一樣東西的變化率,和鏈式法則關係很大.
A spotlight on the ground shines on a wall 12m away. If a man 2m tall walks from the spotlight toward the building at a speed of 1.6 m/s, how fast is the length of the shadow on the building decreasing when he is 4m from the building?
Let denote the distance(in meters)the man is from the building at time t meas-ured in seconds.Let denote the length(in meters)of the man's shadow on the build-ing at time t.
Then
(Since the distance from the building to the man is changing, use the derivative of this distance.Notice that is decreasing since he is walking toward the building.This ex-plains the sign of the derivative.)
Find when
Notice that is similar to.So from high school geometry, correspond-ing sides are proportional.
When
Hence, the length of the man's shadow is decreasing at the rate of .
-
牛頓迭代法
Newton's method
basic formula:
有啥用?
可以做error analysis.
-
極限未定式與洛必達法則
indeterminate form
微分
Differential
何爲微分
It's really the same thing with linear approximation:
.
微分的應用
體現在下一節——不定積分.
不定積分
何為不定積分
積分的唯一性
uniqueness of antiderivatives up to a constant
:
.
不定積分的計算
‘提前猜測’
Advanced guessing
一言以蔽之:刷題,然後練題感.
提前猜測:答案為:
猜測的答案有無,在此基礎上修正,別忘了加C:
guess:
try:
so we get:
換元法
Substitution method
In the substitution method, we go for the trickiest part. and substitute for that.
.
subst: ;
.
one more example:
Steps of substitution:
- Focus on the most tricky part, use a new variable to replace the 'tricky part'
- Use chain rule to find the relationship between dx of varieble of primitive function and du of new variable
Two more examples:
不定積分的應用
微分方程
differential equation.
The aim of differential equation is to solve them, just as with algebraic equations. Usually, differential equation are telling you something about the balance between an acceleration and a velocity, (for example) if you have a falling object, it might have a resistance, which is telling you something (on the differential equation). So actually, something in applied problems, formulating what differential equation describe this situation is very important.
:
分離變量法
separation of variables.
.
通解
works for , or .
Take the curves perpendicular to the parabolas.
.
so we get the differential equation:
then we have:
, only when is a positive number.
(It's not a explicit solution)
定積分
Definite Integration
何爲定積分
幾何定義
Geometric point of view.
Find area under a curve.
定積分的性質
Properties of the definite intergral.
5. , where is in .
The properties above are true whether ,, or .
定積分的比較(積分估計)
Comparison Properties of the Intergral (Estimation)
6. If for , then .
Areas are positive.
7. If for , then .
A bigger function has a bigger integral.
8. If for , then
if is continuous we could take and to be the absolute minimum and maximum values of on interval .
泰勒展開式可以根據積分的這些性質得出.
定積分的計算
求黎曼和
is replaced by , this is what happens in the limit ().
Area under the humps of .
the area under the humps of is 2.
微積分基本定理
The Fundamental Theorem of Calculus.
It proves the basic relationship between the integral and the derivative, which helps us understand and solve various problems in calculus more easily.
FTC1
震撼與證明過程之美麗,我必須把貼在這裏:
main formula (use Leibniz notation):
Generally, says that if we first integrate and then differentiate the result, we get back to the original function .
Find the derivative of function .
Since is continuous, gives:
Find .
Here we have to be use Chain Rule.
Let , then:
FTC2
, I must say, is normal, so normal compare to .
Find the area under the parabola from 0 to 1.
An antiderivative of is . The required area is found using FTC2:
.
不定積分
不定積分的計算
公式表
Tables of Indefinite integrals.
随想
預習的目的是明確上課時將要學習什麽知識,這些知識這可以幫助我們解決具體問題(或者至少可以解決什麽樣的題目),也就是説帶著目的去聽講,起碼知道我們將要如何運用這些知識,而不是說預習是要讓我們自己學會所有的内容.
但是如果學校教的太爛或者太慢,你就不得不自己學會所有内容了.
未完待續.