Note - Single Variable Calculus

本文详细介绍了导数的定义、类型(包括线性近似、隐函数求导、对数求导等)、相关求导法则(链式法则、换元法),以及微积分中的其他重要概念如参数方程、二阶导数、极限、不定积分、定积分和微积分基本定理的应用。
摘要由CSDN通过智能技术生成

Don't abandon your precaculus skills and common sense.

42317aeff79d48f699275543743ace66.jpeg

 

考點

Type of problems

1.Linear approx

2.Sketch a graph

3.max/min

4.related rates

5.antiderivative

 

導數

何爲導數

  • 幾何定義

  • 物理定義

如何求導

  • 求導四則運算

  • 初等函數導數

  • 鏈式法則

鏈式法則是一種合成規則(Composition rule)

換元法(substitution)的英文我覺得挺有意思的,use new variable names.

eq?%5Cfrac%7B%5CDelta%20y%7D%7B%5CDelta%20t%7D%20%3D%20%5Cfrac%7B%5CDelta%20y%7D%7B%5CDelta%20x%7D%20%5Ccdot%20%5Cfrac%7B%5CDelta%20x%7D%7B%5CDelta%20t%7D%20%5CRightarrow%5Cfrac%7Bdy%7D%7Bdt%7D%20%3D%20%5Cfrac%7Bdy%7D%7Bdx%7D%5Ccdot%5Cfrac%7Bdx%7D%7Bdt%7D

這方法就是我們接下來要在隱函數求導中用到的.

  • 隱函數求導

隱函數求導(implicit differentiation),顧名思義,當然是一種求導的方法,其步驟如下:

  1. 通過移項將含y和含x的項分別移到等式兩邊(如,將eq?x%5E2+y%5E2%3D1整理為 eq?y%5E2%3D1-x%5E2 )
  2. 等式兩邊同時求導
  3. 含x的部分直接求導,含y的部分通過將eq?%5Cfrac%7Bd%7D%7Bdx%7D轉化為eq?%5Cfrac%7Bdy%7D%7Bdx%7D%5Cfrac%7Bd%7D%7Bdy%7D,從而實現直接對y求導,再求出導數即eq?%5Cfrac%7Bdy%7D%7Bdx%7D的值

隱函數的本質,其實就是利用鏈式法則求導,僅此而已.

 

  • 對數求導

        logarithmic di-f ferentiation

 

eq?y%3Dx%5E%7B%5Csin%20x%7D的導數eq?y%27.

eq?Solution

等式兩邊同時取對數,得 eq?%5Cln%20y%20%3D%20%5Csin%20x%5Cln%20x%3B

兩邊對eq?x求導得 eq?%5Cfrac%7B1%7D%7By%7Dy%27%20%3D%20%5Ccos%20x%20%5Cln%20x%20+%5Csin%20x%5Ccdot%5Cfrac%7B1%7D%7Bx%7D%3B

則有 eq?y%27%3Dy%28%5Ccos%20x%5Cln%20x+%5Cfrac%7B%5Csin%20x%7D%7Bx%7D%29%3Dx%5E%7B%5Csin%20x%7D%28%5Ccos%20x%5Cln%20x+%5Cfrac%7B%5Csin%20x%7D%7Bx%7D%29.

 

Differemtiate eq?%5Csqrt%5B3%5D%7B%28x%5E2-1%29%282-x%29%7D.

eq?Solution

 

  • 參數方程求導

對於eq?y%3Df%28x%29%2C 若eq?x%2Cy均由另一个变量eq?t确定,则有参数方程(parametric quation):

 eq?%5Cbegin%7Bcases%7D%20x%3Dg%28t%29%5C%5C%20y%3Dh%28t%29%20%5Cend%7Bcases%7D

則有:

eq?%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5Cfrac%7Bh%27%28x%29%7D%7Bg%27%28t%29%7D%3D%5Cfrac%7B%5Cfrac%7Bdy%7D%7Bdt%7D%7D%7B%5Cfrac%7Bdx%7D%7Bdt%7D%7D.

求橢圓

eq?%5Cbegin%7Bcases%7D%20x%3Da%5Ccos%20t%5C%5C%20y%3Db%5Csin%20t%20%5Cend%7Bcases%7D%2C0%5Cleq%20t%5Cleq%202%5Cpi
eq?t%3D%5Cfrac%7B%5Cpi%7D%7B4%7D相應的點處的切綫方程.

eq?Solution

a91056f8c64a4abfb46ceefd812cb1c8.jpeg

eq?t%3D%5Cfrac%7B%5Cpi%7D%7B4%7D時,對應的點為eq?M%28%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7Da%2C%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7Db%29.

而切綫斜率為 eq?k%20%3D%5Cfrac%7Bdy%7D%7Bdx%7D%7C_%7Bt%3D%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%3D%5Cfrac%7Bb%5Ccos%20t%7D%7B-a%5Csin%20t%7D%7C_%7Bt%3D%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%3D-%5Cfrac%7Bb%7D%7Ba%7D.

於是切綫方程為eq?y-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7Db%3D-%5Cfrac%7Bb%7D%7Ba%7D%28x-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7Da%29.

 

計算由擺綫eq?%5Cbegin%7Bcases%7Dx%3Da%28t-%5Csin%20t%29%5C%5C%20y%3Da%281-%5Ccos%20t%29%20%5Cend%7Bcases%7D所確定的函數eq?y%3Dy%28x%29 的二階導數 eq?%5Cfrac%7Bd%5E2y%7D%7Bdx%5E2%7D.

 

 

  • 高階導數

eq?Prove

eq?y%3D%5Csqrt%7B2x-x%5E2%7D satisfies eq?y%5E3y%27%27+1%3D0.

eq?Solution

5732aa31aa414f80aae188d4a13be2c0.jpg

 

 

 

導數何爲

  • 最值定理

  • 零點定理

        Zero - point Theorem

The Zero-point Theorem, also called the existence theorem of roots, is a special case of the medium theorem  of continuous function.

  • 介值定理

eq?%28a%2Cb%29

Suppose eq?f is continuous on the closed interval eq?%5Ba%2Cb%5D and eq?C be any number between eq?f%28a%29 and eq?f%28b%29%2C where eq?f%28a%29%5Cneq%20f%28b%29.

Then there must be a number eq?c in eq?%28a%2Cb%29 such that eq?f%28c%29%3DC.

 

  • 微分中值定理

 

利用微分中值定理,可以證明一些不等式和恆等式.

 

羅爾定理

        Rolle's Theorem

MVT的特殊形式.

 

拉格朗日中值定理(MVT)

        (Lagrange) Mean Value Theorem

MVT反映了可導函數在eq?%5Ba%2Cb%5D上整體平均變化率與在eq?%28a%2Cb%29内某點eq?c處的局部變化率的關係.因此,MVT是連結局部與整體的紐帶.

cf3602bd9063491c9e6a4f6bbd16d27d.jpeg

obviously:

eq?%5Cmin%7Bf%27%7D%5Cleq%20%5Cfrac%7Bf%28b%29-f%28a%29%7D%7Bb-a%7D%20%5Cleq%20%5Cmax%7Bf%27%7D

由MVT可直接導出許多結論,如:

        if  eq?a%3Cc%3Cb , then:

  1. eq?f%27%28c%29%3E0%5C%20%5CRightarrow%20%5C%20f%28b%29%3Ef%28a%29%3B
  2. eq?f%27%28c%29%3C0%5C%20%5CRightarrow%20%5C%20f%28a%29%3Ef%28b%29%3B
  3. eq?f%27%28c%29%3D0%5C%20%5CRightarrow%20%5C%20f%28a%29%3Df%28b%29%3B

 

兩個定理都强調'continuous on the closed interval'以及'differrentiable on the open interval'.

 

  • 綫性近似

        Linear approximation 

225f381c1b1e482fb7ab0b307143ebd2.png

Linear approximation happens all across engineering. People are looking for these linear relationshipss between the change in some input and the change in the output.

 

Main formulas:

eq?f%28x%29%5Capprox%20f%28x_0%29+f%27%28x_0%29%28x-x_0%29

該公式的幾何含義為:

假設有一條曲線eq?y%3Df%28x%29,那麼它在切點處近似與其切線.

 

綫性近似的基本思想是以直代曲,從而簡化計算.

綫性近似必須在eq?x非常接近eq?x_0時才成立,因爲如果太遠離,精度就不夠高了.

 

  • 二階近似

Use these when linear approxiamation is not enough.

一些有趣的問題:出題人會在題目中指明是綫性近似還是二階近似嗎?

事實上,使用綫性近似還是二階近似應該全憑自己判斷. 

 

Main formulas:

eq?f%28x%29%5Capprox%20f%27%28x_0%29%28x-x_0%29+f%28x_0%29+%5Cfrac%7Bf%27%27%28x_0%29%7D%7B2%7D%28x-x_0%29%5E2

 

  • 相關變化率

        related rate

相關變率表示一樣東西相對於另一樣東西的變化率,和鏈式法則關係很大.

A spotlight on the ground shines on a wall 12m away. If a man 2m tall walks from the spotlight toward the building at a speed of 1.6 m/s, how fast is the length of the shadow on the building decreasing when he is 4m from the building?

eq?Solution

Let eq?x%28t%29 denote the distance(in meters)the man is from the building at time t meas-ured in seconds.Let eq?s%28t%29 denote the length(in meters)of the man's shadow on the build-ing at time t.

Theneq?%5Cfrac%7Bdx%7D%7Bdt%7D%3D-1.6%3D%5Cfrac%7B8%7D%7B5%7D%3B

(Since the distance from the building to the man is changing, use the derivative of this distance.Notice that eq?x%28t%29 is decreasing since he is walking toward the building.This ex-plains the sign of the derivative.)

Find eq?%5Cfrac%7Bds%7D%7Bdt%7D when eq?x%28t%29%3D4.

Notice that eq?%5CDelta%20ABC is similar toeq?%5CDelta%20ADE.So from high school geometry, correspond-ing sides are proportional.

eq?%5Cfrac%7Bs%28t%29%7D%7B2%7D%20%3D%20%5Cfrac%7BBC%7D%7BDE%7D%3D%5Cfrac%7BAC%7D%7BAE%7D%20%3D%20%5Cfrac%7B12%7D%7B12-x%28t%29%7D%20%5CLeftrightarrow%20s%28t%29%20%3D%2024%2812-x%28t%29%29%5E%7B-1%7D.%5C%5C%5Cfrac%7Bds%7D%7Bdt%7D%3D24%2812-x%28t%29%29%5E%7B-2%7D%5Cfrac%7Bdx%7D%7Bdt%7D.

When eq?x%28t%29%3D4%2C%5Cfrac%7Bds%7D%7Bdt%7D%3D24%2812-4%29%5E%7B-2%7D%28-%5Cfrac%7B8%7D%7B5%7D%29%3D-%5Cfrac%7B3%7D%7B5%7D.

Hence, the length of the man's shadow is decreasing at the rate of s.

 

 

  • 牛頓迭代法

        Newton's method

 

basic formula:
eq?x_%7Bn+1%7D%3Dx_n-%5Cfrac%7Bf%28x_n%29%7D%7Bf%27%28x_n%29%7D

 

有啥用?

可以做error analysis.

 

  • 極限未定式與洛必達法則

        indeterminate form

 

 

微分

Differential

 

何爲微分

eq?dy%3Df%27%28x%29dx%20%5C%20%5CLeftrightarrow%20%5C%20%5Cfrac%7Bdy%7D%7Bdx%7D%3Df%27%28x%29

eq?%2864.1%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5Capprox%3F

eq?Solution

eq?y%3Dx%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5C%20%5CRightarrow%20%5C%20dy%3D%5Cfrac%7B1%7D%7B3%7Dx%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D

eq?x%3D64%5C%20%5CRightarrow%5C%20y%3D64%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3D4

eq?dy%3D%5Cfrac%7B1%7D%7B3%7Dx%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D%3D%20%5Cfrac%7B1%7D%7B3%7D%2864%29%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D%5Ccdot%5Cfrac%7B1%7D%7B16%7Ddx%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5Ccdot%5Cfrac%7B1%7D%7B16%7Ddx%3D%5Cfrac%7B1%7D%7B48%7Ddx

eq?ovbiously%2C%20dx%3D%5Cfrac%7B1%7D%7B10%7D%2C

eq?%2864.1%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5Capprox%20y+dy%3D4+%5Cfrac%7B1%7D%7B48%7Ddx%3D4+%5Cfrac%7B1%7D%7B480%7D.

 

 

It's really the same thing with linear approximation:
eq?x%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5Capprox%204+%5Cfrac%7B1%7D%7B48%7D%28x-64%29%2C

eq?64.1%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3D4+%5Cfrac%7B1%7D%7B48%7D%28%5Cfrac%7B1%7D%7B10%7D%29%3D4+%5Cfrac%7B1%7D%7B480%7D.

 

微分的應用

體現在下一節——不定積分.

 

不定積分

何為不定積分

積分的唯一性

uniqueness of antiderivatives up to a constant

eq?Theorem   eq?if%20%5C%20F%27%3DG%27%2Cthen%20%5C%20F%28x%29%3DG%28x%29+C

eq?Proof

eq?if%5C%20F%27%3DG%27%2C

eq?then%5C%20%28F-G%29%27%3DF%27-G%27%3D0%2C

eq?Hence%5C%20F%28x%29-G%28x%29%3DC%20%5C%20is%20%5C%20a%20%5C%20constant.

 

不定積分的計算

‘提前猜測’

Advanced guessing

一言以蔽之:刷題,然後練題感.

 

eq?%5Cint%20e%5E%7B6x%7Ddx

eq?Solution

提前猜測:答案為:eq?e%5E%7B6x%7D%3B

eq?%5Cfrac%7Bd%7D%7Bdx%7De%5E%7B6x%7D%3D6e%5E%7B6x%7D%2C 猜測的答案有無,在此基礎上修正,別忘了加C:

eq?%5Cint%20e%5E%7B6x%7D%3D%5Cfrac%7B1%7D%7B6%7De%5E%7B6x%7D+C.

 

 

eq?%5Cint%20%5Csin%20x%5Ccos%20x%20dx

eq?Solution

guess: eq?%5Ccos%5E2x

try: eq?%5Cfrac%7Bd%7D%7Bdx%7D%5Ccos%5E2x%3D-2%5Csin%20x%5Ccos%20x%2C

so we get:

eq?%5Cint%20%5Csin%20x%5Ccos%20x%20dx%20%3D%20-%5Cfrac%7B1%7D%7B2%7D%5Ccos%5E2%20x+c

 

換元法

Substitution method

 

In the substitution method, we go for the trickiest part. and substitute for that.

 

eq?%5Cint%20%5Cfrac%7Bdx%7D%7Bx%5Cln%20x%7D.

eq?Solution

subst:  eq?u%20%3D%5Cln%20x%5C%20%5CRightarrow%20%5C%20du%3D%5Cfrac%7Bdx%7D%7Bx%7D;

eq?%5Cint%20%5Cfrac%7Bdx%7D%7Bx%5Cln%20x%7D%3D%5Cint%20%5Cfrac%7B1%7D%7B%5Cln%20x%7D%5Ccdot%20%5Cfrac%7Bdx%7D%7Bx%7D%3D%5Cint%20%5Cfrac%7B1%7D%7Bu%7D%5Ccdot%20%5Cfrac%7Bdx%7D%7Bx%7D%3D%5Cint%20%5Cfrac%7Bdu%7D%7Bu%7D%3D%5Cln%20%7Cu%7C+C%3D%5Cln%7C%5Cln%20x%7C+C.

 

one more example:

47439b8f174d428d9d4330113640285b.jpg

 

Steps of substitution

  1. Focus on the most tricky part, use a new variable to replace the 'tricky part'
  2. Use chain rule to find the relationship between dx of varieble of primitive function and du of new variable

 

Two more examples:

8382913412a440cc8b25981432a4ddad.jpg

 

 

不定積分的應用

微分方程

differential equation.
 

The aim of differential equation is to solve them, just as with algebraic equations. Usually, differential equation are telling you something about the balance between an acceleration and a velocity, (for example) if you have a falling object, it might have a resistance, which is telling you something (on the differential equation). So actually, something in applied problems, formulating what differential equation describe this situation is very important.

 

eq?EX%5C%20a%5C%20%27sloved%27%20%5C%20equation :

eq?%5Cbegin%7Baligned%7D%20%5Cfrac%7Bdy%7D%7Bdx%7D%26%3Df%28x%29%5C%5C%20y%3D%26%5Cint%20f%28x%29dx%20%5Cend%7Baligned%7D

 

eq?%28%5Cfrac%7Bd%7D%7Bdx%7D+x%29y%3D0.

eq?Solution

eq?%5Cbegin%7Baligned%7D%20%5Cfrac%7Bdy%7D%7Bdx%7D%3D%26-xy%5C%5C%20%5Cfrac%7Bdy%7D%7By%7D%3D%26-xdx%5C%5C%20%5Cint%5Cfrac%7Bdy%7D%7By%7D%3D%26-%5Cint%20xdx%20%5Cend%7Baligned%7D

分離變量法

separation of variables.

eq?%5Cbegin%7Baligned%7D%20%5Cfrac%7Bdy%7D%7Bdx%7D%3D%26f%28x%29g%28y%29%5C%5C%20%5Cfrac%7Bdy%7D%7Bg%28y%29%7D%3D%26f%28x%29dx%20%5Cend%7Baligned%7D.

 

eq?%5Cln%20%7Cy%7C%3D-%5Cfrac%7Bx%5E2%7D%7B2%7D+C%20%28y%5Cne%200%29

eq?Solution

eq?%5Cbegin%7Baligned%7D%7Cy%7C%3D%26Ae%5E%7B-%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%5C%5C%20y%3D%26%5Cpm%20Ae%5E%7B-%5Cfrac%7Bx%5E2%7D%7B2%7D%7D%20%5Cend%7Baligned%7D

 

eq?EX%20%5C%20via%20%5C%20separation%5C%20of%20%5C%20vars

eq?Solution

eq?%5Cbegin%7Baligned%7D%20%5Cfrac%7Bdy%7D%7Bdx%7D%3D%26f%28x%29%5C%20%5CRightarrow%5C%20dy%3Df%28x%29dx%5C%5C%20y%3D%26%5Cint%20dy%20%3D%5Cint%20f%28x%29dx%20%5Cend%7Baligned%7D

 

 

eq?%5Cfrac%7Bdy%7D%7Bdx%7D%3D2%5Cfrac%7By%7D%7Bx%7D

eq?Solution

eq?%5Cbegin%7Baligned%7D%20dy%3D%262%5Cfrac%7By%7D%7Bx%7Ddx%5C%5C%20%5Cfrac%7Bdy%7D%7By%7D%3D%26%5Cfrac%7B2dx%7D%7Bx%7D%5C%5C%20%5Cint%20%7B%5Cfrac%7Bdy%7D%7By%7D%7D%3D%26%5Cint%7B%5Cfrac%7B2dx%7D%7Bx%7D%7D%20%5C%5C%20%5Cln%20y%3D%262ln%20x%20+C%5C%5C%20%5Cend%7Baligned%7D

 

eq?e%5E%7B%5Cln%20y%7D%3De%5E%7B2%5Cln%20x+C%7D

eq?Solution

eq?%5Cbegin%7Baligned%7D%20e%5E%7B%5Cln%20y%7D%3D%26e%5E%7B2%5Cln%20x+C%7D%5C%5C%20y%3D%26Ax%5E2%5C%20%28A%3De%5EC%29%5C%5C%20%5Cend%7Baligned%7D

 

 

通解

eq?y%3Dax%5E2

eq?%5Cfrac%7Bdy%7D%7Bdx%7D%3D2ax%3D%5Cfrac%7B2ax%5E2%7D%7Bx%7D%3D%5Cfrac%7B2y%7D%7Bx%7D

works for eq?a%3E0, eq?a%3C0 or eq?a%3D0.

 

eq?EX4 Take the curves perpendicular to the parabolas.

eq?%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5Cfrac%7B-1%7D%7Bslope%5C%20of%5C%20tangent%20%5C%20to%5C%20parabola%7D%3D%5Cfrac%7B1%7D%7B2%5Cfrac%7By%7D%7Bx%7D%7D%3D%5Cfrac%7B-x%7D%7B2y%7D.

so we get the differential equation:

eq?%5Cbegin%7Baligned%7D%20%5Cfrac%7Bdy%7D%7Bdx%7D%3D%26%5Cfrac%7B-x%7D%7B2y%7D%5C%5C%202ydy%3D%26-xdx%5C%5C%20%5Cint%202ydy%3D-%26%5Cint%20xdx%5C%5C%20y%5E2%3D%26%20-%5Cfrac%7Bx%5E2%7D%7B2%7D+C%20%5Cend%7Baligned%7D

then we have:

eq?%5Cfrac%7Bx%5E2%7D%7B2%7D+y%5E2%3DC, only when eq?C is a positive number.

(It's not a explicit solution)

 

定積分

Definite Integration

 

何爲定積分

幾何定義

Geometric point of view.

eq?%5CRightarrow Find area under a curve.

 

 定積分的性質

Properties of the definite intergral.

c4ed4b36c3144579a078de3d7d97cf2a.jpeg

    5. eq?%5Cint_%7Ba%7D%5E%7Bc%7Df%28x%29dx+%5Cint_%7Bc%7D%5E%7Bb%7Df%28x%29dx%3D%5Cint_%7Ba%7D%5E%7Bb%7Df%28x%29dx, where eq?c is in eq?%28a%2Cb%29.

The properties above are true whether eq?a%3Cb,eq?a%3Db, or eq?a%3Eb.

 

定積分的比較(積分估計)

Comparison Properties of the Intergral (Estimation)

6. If eq?f%28x%29%5Cgeq%200 for eq?a%5Cleq%20x%5Cleq%20b, then eq?%5Cint_%7Ba%7D%5E%7Bb%7Df%28x%29dx%5Cgeq0.

Areas are positive.

 

7. If eq?f%28x%29%5Cgeq%20g%28x%29 for eq?a%5Cleq%20x%5Cleq%20b, then eq?%5Cint_%7Ba%7D%5E%7Bb%7Df%28x%29dx%5Cgeq%20%5Cint_%7Ba%7D%5E%7Bb%7Dg%28x%29dx.

A bigger function has a bigger integral.

 

8. If eq?m%5Cleq%20f%28x%29%5Cleq%20M for eq?a%5Cleq%20x%5Cleq%20b, then

eq?m%28b-a%29%5Cleq%20%5Cint_%7Ba%7D%5E%7Bb%7Df%28x%29dx%5Cleq%20M%28b-a%29

if eq?f is continuous we could take eq?m and eq?M to be the absolute minimum and maximum values of  on interval eq?%5Ba%2Cb%5D.

 

泰勒展開式可以根據積分的這些性質得出.

 

定積分的計算

求黎曼和

eq?%5Csum_%7Bi%3D1%7D%5E%7Bn%7Df%28c_i%29%5CDelta%20x%20%5Crightarrow%20%5Cint_%7Ba%7D%5E%7Bb%7Df%28x%29dx

eq?%5CDelta%20x is replaced by eq?dx, this is what happens in the limit (eq?%5CDelta%20x%5Crightarrow%200).

 

eq?EX Area under the humps of eq?f%28x%29%3D%5Csin%20x.

eq?Solution

eq?%5Cbegin%7Baligned%7D%20%5Cint_%7B0%7D%5E%7B%5Cpi%7D%5Csin%20x%20dx%3D%26%28-%5Ccos%20x%29%7C_%7B0%7D%5E%7B%5Cpi%7D%5C%5C%20%3D%26-%5Ccos%20%5Cpi%20-%28-%5Ccos0%29%5C%5C%20%3D%262%20%5Cend%7Baligned%7D

the area under the humps of eq?%5Csin%20x is 2.

 

 微積分基本定理

The Fundamental Theorem of Calculus.

 

It proves the basic relationship between the integral and the derivative, which helps us understand and solve various problems in calculus more easily.

 

FTC1

震撼與eq?FTC1證明過程之美麗,我必須把eq?Proof貼在這裏:

86f830b8951e457ea01fcecfddedb217.jpeg

 

 

main formula (use Leibniz notation):

eq?%5Cfrac%7Bd%7D%7Bdx%7D%5Cint_%7Ba%7D%5E%7Bx%7Df%28t%29dt%3Df%28x%29

 

Generally, eq?FTC1 says that if we first integrate eq?f and then differentiate the result, we get back to the original function eq?f.

 

Find the derivative of function eq?g%28x%29%3D%5Cint_%7B0%7D%5E%7Bx%7D%5Csqrt%7B1+t%5E2%7Ddt.

eq?Solution

Since eq?f%28t%29%3D%5Csqrt%7B1+t%5E2%7D is continuous, eq?FTC1 gives:

eq?g%27%28x%29%3D%5Csqrt%7B1+x%5E2%7D

 

 

Find eq?%5Cfrac%7Bd%7D%7Bdx%7D%5Cint_%7B1%7D%5E%7Bx%5E4%7D%5Csec%7Bt%7Ddt.

eq?Solution

Here we have to be use Chain Rule.

Let eq?u%3Dx%5E4, then:

eq?%5Cbegin%7Baligned%7D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cint_%7B1%7D%5E%7Bx%5E4%7D%5Csec%7Bt%7Ddt%20%26%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cint_%7B1%7D%5E%7Bu%7D%5Csec%20t%20dt%20%5C%5C%20%26%3D%5Cfrac%7Bd%7D%7Bdu%7D%28%5Cint_%7B1%7D%5E%7Bu%7D%5Csec%20t%20dt%29%5Cfrac%7Bdu%7D%7Bdx%7D%5C%5C%20%26%3D%5Csec%20u%20%5Cfrac%7Bdu%7D%7Bdx%7D%5C%5C%20%26%3D%5Csec%28x%5E4%29%5Ccdot%204x%5E3%20%5Cend%7Baligned%7D

 

FTC2

eq?FTC2, I must say, is normal, so normal compare to eq?FTC1.

 

Find the area under the parabola eq?y%3Dx%5E2 from 0 to 1.

eq?Solution

An antiderivative of eq?f%28x%29%3Dx%5E2 is eq?F%28x%29%3D%5Cfrac%7B1%7D%7B3%7Dx%5E3. The required area eq?A is found using FTC2:

eq?A%3D%5Cint_%7B0%7D%5E%7B1%7Dx%5E2dx%3D%5Cfrac%7Bx%5E3%7D%7B3%7D%7C_%7B0%7D%5E%7B1%7D%3D%5Cfrac%7B1%5E3%7D%7B3%7D-%5Cfrac%7B0%5E3%7D%7B3%7D%3D%5Cfrac%7B1%7D%7B3%7D.

 

abc51949aae7486f84e2ebea5f31ee67.png

 

不定積分

不定積分的計算

公式表

Tables of Indefinite integrals.

fc0f8e118f2e4082bb5de9ffeb12acda.png


 

 

随想


預習的目的是明確上課時將要學習什麽知識,這些知識這可以幫助我們解決具體問題(或者至少可以解決什麽樣的題目),也就是説帶著目的去聽講,起碼知道我們將要如何運用這些知識,而不是說預習是要讓我們自己學會所有的内容.

但是如果學校教的太爛或者太慢,你就不得不自己學會所有内容了.

 

未完待續.

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值