139.单词拆分
题目链接:704. 二分查找
文档讲解:代码随想录
思路
dp数组dp[i]表示长度为i的字符串是否可以拆分为一个或多个再字典中出现的单词。
递推公式:如果dp[j]为true,且[j, i]区间的字串出现在字典中,则dp[i]为true。
如:对于dp[i],遍历j=0~i,如果字串[j, i]出现在字典中,且dp[j]为true,则dp[i]为true。
代码
class Solution {
public:
bool wordBreak(string s, vector<string> &wordDict) {
unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
vector<bool> dp(s.size() + 1, false);
dp[0] = true;
for (int i = 0; i <= s.size(); i++) {
for (int j = 0; j <= i; j++) {
string word = s.substr(j, i - j);
if (wordSet.find(word) != wordSet.end() && dp[j])
dp[i] = true;
}
}
return dp[s.size()];
}
};
多重背包
题目链接:56. 携带矿石资源(第八期模拟笔试)
文档讲解:代码随想录
思路
将多重背包中的所有物品展开,则转换为01背包问题。
代码
#include <iostream>
#include <vector>
#include <string>
#include <unordered_set>
using namespace std;
int main() {
int C, N;
cin >> C >> N;
vector<int> weights(N, 0);
vector<int> values(N, 0);
vector<int> nums(N, 0);
for (int i = 0; i < N; i++)
cin >> weights[i];
for (int i = 0; i < N; i++)
cin >> values[i];
for (int i = 0; i < N; i++)
cin >> nums[i];
int num_count = 0;
for (auto i : nums)
num_count += i;
vector<int> stones_weights(num_count, 0);
vector<int> stones_values(num_count, 0);
int index = 0;
for (int i = 0; i < N; i++) {
for (int j = 0; j < nums[i]; j++) {
stones_weights[index] = weights[i];
stones_values[index] = values[i];
index++;
}
}
vector<int> dp(C + 1, 0);
for (int i = 0; i < stones_weights.size(); i++) {
for (int j = C; j >= stones_weights[i]; j--) {
dp[j] = max(dp[j], dp[j - stones_weights[i]] + stones_values[i]);
}
}
cout << dp[C] << endl;
}
背包问题总结
文档讲解:代码随想录
按背包类型分类:01背包、完全背包、多重背包等。
- 01背包:遍历背包时从后向前遍历
- 完全背包:遍历背包时从前向后遍历
- 多重背包:将物品展开转换为01背包问题
按所求问题分类:能否装满背包,背包最多装多少,装满背包有多少种方法,背包装满最大价值,装满背包所需最小物品数。
- 能否装满背包:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]),即01背包问题中价值和重量相同,装完背包后,最大价值与背包容量相同则可以装满背包。
- 背包最多装多少:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]),即01背包问题中价值和重量相同。
- 装满背包有多少种方法:dp[j] += dp[j - nums[i]]。
- 背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i])。
- 装满背包所需最小物品数:dp[j] = min(dp[j], dp[j - nums[i]] + 1)。
遍历顺序
- 求组合数:外层循环遍历物品,内层循环遍历背包。
- 求排列数:外层循环遍历背包,内层循环遍历物品。