代码随想录算法训练营第四十六天|139.单词拆分,多重背包,背包问题总结

139.单词拆分

题目链接:704. 二分查找

文档讲解:代码随想录

视频讲解:动态规划之完全背包,你的背包如何装满?| LeetCode:139.单词拆分

思路

dp数组dp[i]表示长度为i的字符串是否可以拆分为一个或多个再字典中出现的单词。

递推公式:如果dp[j]为true,且[j, i]区间的字串出现在字典中,则dp[i]为true。

如:对于dp[i],遍历j=0~i,如果字串[j, i]出现在字典中,且dp[j]为true,则dp[i]为true。

代码

class Solution {
public:
    bool wordBreak(string s, vector<string> &wordDict) {
        unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
        vector<bool> dp(s.size() + 1, false);
        dp[0] = true;
        for (int i = 0; i <= s.size(); i++) {
            for (int j = 0; j <= i; j++) {
                string word = s.substr(j, i - j);
                if (wordSet.find(word) != wordSet.end() && dp[j])
                    dp[i] = true;
            }
        }
        return dp[s.size()];
    }
};

多重背包

题目链接:56. 携带矿石资源(第八期模拟笔试)

文档讲解:代码随想录

思路

将多重背包中的所有物品展开,则转换为01背包问题。

代码

#include <iostream>
#include <vector>
#include <string>
#include <unordered_set>

using namespace std;

int main() {
    int C, N;
    cin >> C >> N;
    vector<int> weights(N, 0);
    vector<int> values(N, 0);
    vector<int> nums(N, 0);
    for (int i = 0; i < N; i++)
        cin >> weights[i];
    for (int i = 0; i < N; i++)
        cin >> values[i];
    for (int i = 0; i < N; i++)
        cin >> nums[i];

    int num_count = 0;
    for (auto i : nums)
        num_count += i;
    vector<int> stones_weights(num_count, 0);
    vector<int> stones_values(num_count, 0);
    int index = 0;
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < nums[i]; j++) {
            stones_weights[index] = weights[i];
            stones_values[index] = values[i];
            index++;
        }
    }

    vector<int> dp(C + 1, 0);
    for (int i = 0; i < stones_weights.size(); i++) {
        for (int j = C; j >= stones_weights[i]; j--) {
            dp[j] = max(dp[j], dp[j - stones_weights[i]] + stones_values[i]);
        }
    }

    cout << dp[C] << endl;
}

背包问题总结

文档讲解:代码随想录

按背包类型分类:01背包、完全背包、多重背包等。

  • 01背包:遍历背包时从后向前遍历
  • 完全背包:遍历背包时从前向后遍历
  • 多重背包:将物品展开转换为01背包问题

按所求问题分类:能否装满背包,背包最多装多少,装满背包有多少种方法,背包装满最大价值,装满背包所需最小物品数。

  • 能否装满背包:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]),即01背包问题中价值和重量相同,装完背包后,最大价值与背包容量相同则可以装满背包。
  • 背包最多装多少:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]),即01背包问题中价值和重量相同。
  • 装满背包有多少种方法:dp[j] += dp[j - nums[i]]。
  • 背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i])。
  • 装满背包所需最小物品数:dp[j] = min(dp[j], dp[j - nums[i]] + 1)。

遍历顺序

  • 求组合数:外层循环遍历物品,内层循环遍历背包。
  • 求排列数:外层循环遍历背包,内层循环遍历物品。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值