棋盘 K皇后
洛谷P2105 作为我在洛谷AC的第100题,拍照留念。
(我不会告诉你我做这道题用了9个小时的,哈哈 )
题目描述:
小 Z 最近捡到了一个棋盘,他想在棋盘上摆放 KK 个皇后。他想知道在他摆完这 KK 个皇后之后,棋盘上还有多少个格子是不会被攻击到的。
注意:一个皇后会攻击到这个皇后所在的那一行,那一列,以及两条对角线。
初解此题,我的思路局限于通过一个点的位置来找到皇后能走的位置,再用总的格子去减皇后能走的格子。
这样想似乎很合理,如果题目的数据控制在小范围,我一定会这样做。但是,很不幸的是他给的数据范围是1e5,那么这个图最多可以有1e10的格子,而时间限制于1s,显然用蒟蒻的解法会超时。
下面聊聊大佬的思路:
如果通过一个点去描述一张图,这样做的复杂度太大。那么反过来,为什么不可以把图分割成一个个小部分,再通过探究每个点对这个局部图的影响来确定整个图呢?
于是就有下面的代码:
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
#define ll long long
#define N 100000
ll n, m, k;
ll x[N], y[N],vis[N];
ll color[N];
ll ans = 0;
ll step = 0;
int main()
{
cin >> n >> m >> k;
for (int i = 1; i <= k; i++)
{
cin >> x[i] >> y[i];
vis[x[i]] = 1;
}
for (int i = 1; i <= n; i++)
{
if (vis[i] == 1)
{
continue;
}
ll sum = m;
//cout << 'm' << ' ' << m << endl;
for (int j = 1; j <= k; j++)
{
//cout << "color[y[j]]= " << color[y[j]] << endl;
if (color[y[j]] != i)sum--;
//cout <<'1' <<' '<<sum << endl;
color[y[j]] = i;//致命错误
if (x[j] > i)
{
int len = x[j]-i;
if (y[j] -1>= len&&color[y[j]-len]!=i)
{
sum--;
color[y[j] - len] = i;
}
if (m - y[j] >= len && color[y[j] + len] != i)
{
sum--;
color[y[j] + len] = i;
}
}
//cout << '2'<<' '<<sum << endl;
if(x[j]<i)
{
int len = i-x[j];//顶级错误
if (y[j] -1>= len && color[y[j] - len] != i)
{
sum--;
// cout << y[j] - 1 << ' ' << len << endl;
// cout << "keneng chucuo" << endl;
color[y[j] - len] = i;
}
if (m - y[j] >= len && color[y[j] + len] != i)
{
sum--;
color[y[j] + len] = i;
}
}
// cout <<'3'<< ' '<< sum << endl;
}
//cout << '4'<<' '<<sum << endl;
ans += sum;
}
cout << ans << endl;
return 0;
}
我们把一个棋盘分解成n个行,研究每个点对该行的影响,如果这个皇后斜着走会经过这行,那我们就标记这个点,当遍历了所有点后,那些没有标记的点就是皇后不会经过的点,这样这一行的不能被经过点的个数就确定了。重复操作后就可以找到这样图的全部未经过点了。
其实这个思路不难理解,但是思路化为代码确实令人难受。换句话说,就是打码一小时,调试八小时。
下面就来聊聊我在这道题上放的小错误:
1.1 建图的错误
一开始我认为的棋盘是这个样子的:
但实际上是这个样子的:
我记得这个建图错误不是第一次遇到,但还是忘记了。
在解决了这个问题后,我觉得我一定能过了。但是垃圾oj又一次让我感受到了社会的险恶,全面WA了。于是我开启了疯狂调试之路,这一调又是3小时。
最后我是通过自己建图来找错的:
根据图来看代码,最后发现我有几处的 j 写成了 i 。直接吐血的操作,哎。
由此题也告诉我们,最好不要让j 和 i 出现在同一个部分,特别是 i 和 j 要不断变化和使用的时候,因为一个不小心就是 8个小时调代码的欢乐时光。