目录
1. 基本思想
- 把数组划分为若干个大小相同的子区间(桶),每个子区间各自排序,最后合并。
2. 排序原理
- 将数组分到有限数量的桶里。每个桶再个别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排序),最后依次把各个桶中的记录列出来记得到有序序列。
3. 排序过程
- 以从小到大排列为例,设原数组 [27, 23, 45, 42],分为10个桶,每个桶区间大小为10
- 桶【2】:[27, 23]
- 桶【4】:[45, 42]
- 其余桶都为空
- 对桶排序
- 桶【2】:[23, 27]
- 桶【4】:[42, 45]
- 合并桶
- [23, 27, 42, 45]
4.复杂度分析
平均时间复杂度 | O(n+k) |
最好情况 | O(n+k) |
最坏情况 | O(n^2) |
空间复杂度 | O(n+k) |
稳定性 | 稳定 |
5.代码实现 (以Java为例)
// java
import java.util.Scanner;
public class Main {
public static void main(String[] args){
Scanner in = new Scanner(System.in);
System.out.print("请输入数组的长度:");
int size = in.nextInt();
int[] a = new int[size];
System.out.println("请输入数组:");
for(int i = 0; i < size; i++){
a[i] = in.nextInt();
}
System.out.println("排序后数组:");
bucketSort(a); // 桶排序
}
public static void bucketSort(int[] arr) {
// 声明桶的数量,数组中数值的范围需在(数量*区间)的大小内
ArrayList bucket[] = new ArrayList[10];
for (int i = 0; i < bucket.length; i++) {
bucket[i] = new ArrayList<Integer>(); // 确定桶的格式为ArrayList
}
for (int i = 0; i < arr.length; i++) {
int index = arr[i] / 10; // 确定元素存放的桶号,以10为一个区间
bucket[index].add(arr[i]); // 将元素存入对应的桶中
}
for (int i = 0; i < bucket.length; i++) { // 遍历每一个桶
bucket[i].sort(null); // 对每一个桶排序
for (int j = 0; j < bucket[i].size(); j++) { // 遍历桶中的元素并输出
System.out.print(bucket[i].get(j) + " ");
}
}
}
}
6.运行结果
7.各排序算法效率
- 在数据随机的情况下,可以参考下面文章中的图表
- 算法性能:十种常见排序算法时间效率直观对比 - 活的潇洒80 - 博客园