前言
本篇文章是对学习了闵帆老师的《论文写作》课程后的一些心得体会进行总结,利用好这些方法,对论文的写作大有裨益。
中肯而闪亮的题目
论文题目在学术传播中至关重要。它不仅是研究内容的核心概述,还在吸引读者与审稿人关注方面起到关键作用。一个精确、简明的题目应能反映论文的创新性和研究焦点,使用领域相关的专业术语以提高检索效率。题目过长或过于笼统可能削弱影响力,而过于简单的“基于”表述会减少原创性。因此,设计一个中肯而闪亮的题目是很有必要的。
- 术语和其它词汇应该在该领域内常用, 不应该要求读者借助词典才能理解
- 使用流行术语有助于提高论文的可检索性,进而提升论文的引用频次。对于学者而言,论文的引用次数通常比论文数量更为重要
- 最佳标题长度应控制在40到60个字母之间。较短的标题往往显示出更高的创新性
- 尽量避免使用 based on,一些中文期刊已经要求论文题目不要使用 “基于”
- 使用 through, with 等来表示技术
- 如果主要贡献为算法,题目的缩写就应是算法的名称
用好LaTex,告别繁琐排版
LaTeX 是一种基于 TeX 的排版系统,广泛用于学术出版、技术文档和其他需要高质量排版的文本。它特别适合处理复杂的数学公式、文献引用和大规模文档。
在用 Latex 进行写作时,一定不要自己从头写,最好找目标期刊已录用论文的源文件或者该期刊提供的模板文件,使用学术论文模板作为起点,通过修改已有模板快速上手。
一些常见的 LaTex 格式文件移步闵老师的博客
https://blog.csdn.net/minfanphd/article/details/121065330
慎用单词与短语
未在学术文章中出现的单词或者出现频率很低的单词,不要使用。
- 在正式论文中,避免使用缩写(如 haven’t, don’t)。应写为“have not”, “do not”, “cannot”等。只有在表达作者所属时(如“authors’”)可以使用撇号
- 禁止在句子的开头用 And,在句子中间使用时要谨慎,特别是当没有对等的词组时。例如,“data mining and machine learning”可以接受,而“data mining and algorithm design”则不太合适
- easy 禁用 simple 要慎用,简单就没有研究的必要,即使自己的研究内容真的简单,不要在文字中体现
- 将 solve 改为 handle 或 address 除非确实解决了某个问题并提供了证明
- 验结果只能表明(show),而非证明(prove),除非有定理及其证明过程
此外,我们可以使用 谷歌学术 和 Ngram Viewer 来查看某些单词或者短语出现的频率及趋势,例如在Ngram Viewer 中, 我们可以输入多个单词(以,
分开)来对比他们的趋势,下图中可以看到 climate change 和 global warming 这两个短语在过去一段时间内内的使用趋势,显然,我们使用 climate change 是合适的。
使用谷歌学术高级搜索 related work 与 related works 使用频率对比
参考文献的雷不要踩
Latex提供了references.bib 文件进行参考文献的管理,极大提高了工作者在参考文献部分撰写的效率和规范性,以下是一些注意事项:
- 不要从网络上直接拷贝别人的bibitem, 使用一个正确的模板 , 把文献的内容填进去, 这样可以避免多数问题
- 等号进行列对齐
- 名在前,姓在后,作者名不要进行缩写,Latex 自己会进行必要的转换
- 注意题目大小写,必要时使用
{}
进行强制设置 - 会议名如果使用简称, 就不要再写全称,引用级别高的会议
- 页码之间应使用两个连词符
-
- 特殊字符需要使用转义符才能正常显示,如
\&
等 - 除最后一行外, 其它行应以逗号结束
- 为了保证格式的正确性, 应检查生成的 pdf 文件, 偶尔还会根据投稿期刊的要求来进行 bibitem 的修改。
审稿意见的回复
如果编辑回复让你修改,那么多半是有戏了,谨记态度、态度、还是™的态度
- 思想上一定要端正态度,审稿人是帮助我们改进论文质量的
- 表达对审稿人的感谢,如:“We thank the reviewer for the kind words.”
- point-to-point 回复,回复问题应该保持直接了当, 同时指出在论文中哪里进行了修改
- 正文中修改部分用蓝色字标出
实验效果不好怎么办
如果实验效果不好,可以考虑以下几个方案:
- 调参,调整学习率或者尝试不同的优化算法,观察哪种算法对模型的收敛效果最好
- 模型结构调整,尝试不同的网络结构,增加或减少层数和每层的节点数。过于复杂的模型可能导致过拟合,过于简单的模型可能无法捕捉数据特征。实验不同的激活函数(如 ReLU、Leaky ReLU、tanh、sigmoid 等),找到适合问题的激活函数
- 更换评价指标,某些算法可能在其他的指标数表现更好,多次尝试看看是否能得出更好的结果
- 进行消融研究(Ablation Study),以确保所选择的每个模块和新增的每个技术都对模型性能有正向的贡献
- 输出中间结果,类似于软件测试中的单元测试。最终结果来源于这些中间结果,深入理解这些结果能够帮助识别问题并进行改进。这对于初学者来说,往往是解决方案缺陷的难点所在
- 培养机器学习研究者的高阶能力,提升洞察力。在复杂的研究过程中,有洞察力的人能提前识别潜在问题,从而避免大部分错误
课程总结
参加《论文写作》这门课程让我对学术写作有了更全面的认识。课程中探讨的论文结构及很多的经验总结,增强了我的写作技能,也提升了我在研究中的自信心和能力。感谢闵老师的无私分享!闵老师论文写作专栏