深度学习与图像识别:机器学习基础之回归

1.线性回归

1.1一元线性回归

1.2多元线性回归

2.逻辑回归

与线性回归的不同在于其将最终预测值y固定在一个范围之中

2.1 Sigmoid函数

sigmoid函数表达式:

p=\frac{1}{1+e^{-z}}

 p为预测出来的概率,范围在0-1之间,一般用于处理二分类问题,因为这个式子的一个显著特征在于:

当z=0,p=0.5

当z>0,p>0.5

当z<0,p<0.5

所以当对z进行多元线性回归表示的时候,以p的值来反映y_pre是一个不错的选择,此处的y_pre一般分为两类(0,1)这时候更适用于sigmoid函数

但由于Sigmoid函数存在梯度消失(Gradient Vanishing)和不以0对称的问题,所以基本很少用了。替代者是Tanh 和 Relu,以Relu最常用。

3.梯度下降法

梯度下降法是一种常用的最优化方法之一,其作用在于对多元回归的权重theta进行优化,找到最适合的值,关键在于,找到损失函数图像,对变量求导,不断调整theta,使得损失函数的值最小

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值