1.线性回归
1.1一元线性回归
1.2多元线性回归
2.逻辑回归
与线性回归的不同在于其将最终预测值y固定在一个范围之中
2.1 Sigmoid函数
sigmoid函数表达式:
p为预测出来的概率,范围在0-1之间,一般用于处理二分类问题,因为这个式子的一个显著特征在于:
当z=0,p=0.5
当z>0,p>0.5
当z<0,p<0.5
所以当对z进行多元线性回归表示的时候,以p的值来反映y_pre是一个不错的选择,此处的y_pre一般分为两类(0,1)这时候更适用于sigmoid函数
但由于Sigmoid函数存在梯度消失(Gradient Vanishing)和不以0对称的问题,所以基本很少用了。替代者是Tanh 和 Relu,以Relu最常用。
3.梯度下降法
梯度下降法是一种常用的最优化方法之一,其作用在于对多元回归的权重theta进行优化,找到最适合的值,关键在于,找到损失函数图像,对变量求导,不断调整theta,使得损失函数的值最小