最少转弯问题(turn)

最少转弯问题(turn)

在这里插入图片描述
思路:一道标准的广搜题(虽然说深搜好像也能过 ) ,难点在于如何判断转弯。
因为要记录转弯,所以我们就需要在大结构体里在定义一个记录方向的变量f,然后就正常广搜就行了。代码细节还是挺多的,具体注释吧。
AC代码:

#include<bits/stdc++.h> 
using namespace std;
int n,m,x1,y,x2,y2,h,t,a[120][120];
int fx[5]={0,1,0,-1,0},fy[5]={0,0,1,0,-1};//转向数组 
struct node
{
	int x,y,z,f;  // x,y是坐标,z是转弯数,f是方向
}b[100100];
int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++)
	    for(int j=1;j<=m;j++)
		    scanf("%d",&a[i][j]);
	scanf("%d%d%d%d",&x1,&y,&x2,&y2);
	b[1].x=x1;b[1].y=y;b[1].z=0;b[1].f=-1;  // 第一次方向随便,特殊处理
	h=0;t=1;//队头,队尾 
	do{//bfs模板 
		h++;
		for(int i=1;i<=4;i++)
		{
			int xx=b[h].x+fx[i],yy=b[h].y+fy[i];
			if(xx>0&&xx<=n&&yy>0&&yy<=m&&a[xx][yy]!=1)
			{
				t++;
				b[t].x=xx;
				b[t].y=yy;
				if(i%2!=b[h].f&&b[h].f!=-1) //判断和上一次方向是不是一样,并且父节点不是第一个,i%2用来判断方向 
				{
				   b[t].z=b[h].z+1; 
				   b[t].f=i%2; //改变方向,转弯数+1
			    }
				else 
				{
				    b[t].z=b[h].z; //转弯数一样
				    if (b[h].f==-1) b[t].f=i%2; //父节点是第一个,要保存本次方向
				    else b[t].f=b[h].f; //父节点不是第一个,方向不变
				}
				if (xx==x2&&yy==y2)
				{ 
				   cout<<b[t].z<<endl;
				   return 0;
				} 
			} 
		}
	}while(h<t);
    return 0; 
}

注意:代码这里有一个小细节,即如果引用了cmath头文件,那么变量名就不能起y1,y2,y0等,因为cmath里定义了y1,y2,y0!!!编译会不过!!!别问我是怎么知道的,问就是调了好长时间

<think>嗯,用户想了解东方博宜系统中的最小拐弯路径算法及其实现。首先,我需要回忆一下这个问题的背景。最小拐弯路径通常是在网格或矩阵中找到从起点到终点转弯次数最少的路径,类似于迷宫寻路问题,但优化目标是减少转弯次数而不是路径长度。 根据用户提供的引用,追梦算法中提到当方向走到底时,从走过的路径中取出点作为新起点继续延伸,这样能保证拐弯数最少[^1]。这说明该算法可能采用了广度优先搜索(BFS)的策略,优先探索同一方向上的所有可能路径,以减少转弯次数。另外,动态规划在路径问题中也有应用,如三角形最小路径和问题中使用动态规划从底部向上递推[^2],这可能为最小拐弯路径提供思路。 接下来,我需要考虑如何结合这两个引用内容。BFS适合处理状态空间中的最短路径问题,而动态规划适用于有重叠子问题的情况。对于最小拐弯路径,可能需要记录每个位置和方向的转弯次数,并优先处理转弯次数少的路径。 可能的实现步骤包括:定义方向(上下左右),使用队列进行BFS,记录每个点的到达方向和已转弯次数,遇到终点时返回结果。同时,需要维护一个访问数组,记录到达该点的最小转弯次数,避免重复处理。 然后,需要验证这种思路是否正确。比如,在每一步中,如果沿当前方向继续走,转弯次数不变;如果改变方向,则次数加一。这样,通过优先处理转弯次数少的节点,可以确保最先到达终点的路径转弯最少。 用户可能还需要具体的代码示例。参考动态规划的例子[^2],可以尝试用类似的结构,但结合BFS。可能需要一个三维数组来存储每个位置在不同方向下的最小转弯次数。 最后,生成相关问题需要考虑用户可能的后续疑问,比如与其他算法的比较、时间复杂度的分析,或者实际应用场景。</think>### 东方博宜 最小拐弯路径 算法解析 最小拐弯路径问题的核心是在网格地图中寻找从起点到终点转弯次数最少的路径。该问题通常采用**广度优先搜索(BFS)的变体**结合方向优先级策略来实现[^1]。 #### 算法核心思路 1. **方向延续性** 每次移动时,优先沿当前方向延伸到底,避免频繁切换方向导致转弯次数增加。例如,若当前向右移动,则尽可能向右走完所有可行格子,再考虑其他方向。 2. **状态记录** 需要记录每个坐标点的**到达方向**和**已累积的转弯次数**,避免重复访问相同状态。例如: $$状态 = (x, y, dir, turns)$$ 其中`dir`表示当前方向,`turns`表示已转弯次数。 3. **优先级队列优化** 使用优先队列(按转弯次数排序)或分层BFS,优先处理转弯次数更少的路径分支,确保首次到达终点时即为最优解。 #### 代码实现框架(Python示例) ```python from collections import deque def min_turn_path(grid, start, end): directions = [(0,1), (1,0), (0,-1), (-1,0)] # 右、下、左、上 m, n = len(grid), len(grid[0]) visited = [[[float('inf')] * 4 for _ in range(n)] for _ in range(m)] q = deque() # 初始化四个方向 for i in range(4): dx, dy = directions[i] nx, ny = start[0] + dx, start[1] + dy if 0 <= nx < m and 0 <= ny < n and grid[nx][ny] == 0: q.append((start[0], start[1], i, 0)) # (x,y,方向,转弯次数) visited[start[0]][start[1]][i] = 0 while q: x, y, dir, turns = q.popleft() if (x, y) == end: return turns # 沿当前方向延伸 dx, dy = directions[dir] nx, ny = x + dx, y + dy if 0 <= nx < m and 0 <= ny < n and grid[nx][ny] == 0: if visited[nx][ny][dir] > turns: visited[nx][ny][dir] = turns q.appendleft((nx, ny, dir, turns)) # 优先处理直行路径 # 尝试转弯(方向改变时转弯次数+1) for new_dir in range(4): if new_dir == dir: continue dx, dy = directions[new_dir] nx, ny = x + dx, y + dy if 0 <= nx < m and 0 <= ny < n and grid[nx][ny] == 0: if visited[nx][ny][new_dir] > turns + 1: visited[nx][ny][new_dir] = turns + 1 q.append((nx, ny, new_dir, turns + 1)) return -1 ``` #### 关键优化点 1. **双向BFS**:同时从起点和终点开始搜索,提升效率 2. **方向剪枝**:若当前方向无法到达终点,提前终止分支 3. **动态规划思想**:类似三角形最小路径和问题,通过状态转移记录最优子结构
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值