YBTOJB数计数(数位DP)

YBTOJB数计数(数位DP)

在这里插入图片描述

这是一道数位DP模板题,本篇题解是用递推写的,但本人更推荐记忆化搜索写法,记忆化搜索模板在这,会在下一篇题解讲解。


思路: 首先,我们看n的大小,显然是无法用0(n)的方法解决,所以我们可以从每一位可以填什么数入手,利用数位DP解决。
我们可以先考虑这样一个子问题:求k位数(可以有前导0)中的B数个数。在这种情况下,我们可以考虑一位一位地填入数字;接下来,我们考虑“可以被13整除”这一条件,我们可以通过将当前的数%13的值作为DP的一维状态,进行DP;对于十进制表示中有13这一条件,我们可以再记录一维状态,用0表示没有“13”,用1表示当前填的位为“3”,用2表示当前的数已经含有“13”。那么我们可以设f[pos][res1][op]为填到从低位到高位的第pos位,此时这个数
的余数为res1,且“13”的出现情况为op,那么对于f[pos][res1][op],明显有:
在这里插入图片描述

其中f[0][0][0]=1.
解决了上面的那个子问题,接下来我们来看看本题。本题与上面问题的不同之处在于,子问题求的是k位数中B数个数,而这个问题求的是1~n的B数个数。
我们还是用原来填数的思想:记n的位数为m,那么我们只考虑填m位数,允许有前导零。从最高位填到最低位,设当前位为pos,n这一位上的数字为s,如果前面的每一位都和n的对应位相等,那么这个位上所填的数就绝对不能超过s.
那么我们分两种情况考虑:当前填入的数<s时,后面的部分就可以自由填。因此,如果已经考虑了前面已填的数的影响,后面的填数就可以按上面的子问题解决;
当前填入的数=s时,为了保证小于n,后面就无法自由填数,这就是“试填法”的思想。我们可以将上面的步骤用记忆化搜索实现。
由于上面的计算方式只能计算1~n-1,因此我们通常会把n加1或特判n.
AC代码:

#include<bits/stdc++.h>
using namespace std;
int f[15][15][5],power[15],a,m;
void Dp()
{
   
	power[0]=1;
	for(int i=1;i<=9;i++) power[i]=power[i-1]*10;
	f[0][0][0]=1;
	for(int pos=1;pos<=10;pos
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值