- 博客(4)
- 收藏
- 关注
原创 【机器学习代码模板】苦苦等待梯度下降,不如对你的特征做点手脚
前言 这是【机器学习代码模板】系列的第四篇文章,之后会持续更新,敬请关注! 与第上一篇文章相比增加的地方 对数据进行特征处理 话不多说,上号 1. 导入程序需要的包以及对数据集进行处理 1.1 导入程序需要的包以及对数据集进行简单处理 import numpy as np import pandas as pd import matplotlib.pyplot as plt # m表示样本的数目,n表示特征的数目 # 假设我们已经有了数据集 dataset = <np.array>
2021-04-05 21:20:30 89
原创 【机器学习代码模板】把你的线性回归模型拉出来遛一遛
前言 这是【机器学习代码模板】系列的第三篇文章,之后会持续更新,敬请关注! 与第上一篇文章相比增加的地方 将数据集划分为training_set和test_set 在training_set上训练模型,在test_set上测试误差 话不多说,上号 1. 导入程序需要的包以及对数据集进行处理 import numpy as np import pandas as pd import matplotlib.pyplot as plt # m表示样本的数目,n表示特征的数目 # 假设我们已经有了数据集 d
2021-03-25 00:08:00 140
原创 【机器学习代码模板】用你的线性回归模型搞点儿事情
导言 这是【机器学习代码模板】系列的第二篇文章,之后会持续更新,敬请关注! 与第上一篇文章相比增加的地方 使用matplotlib画出训练误差随迭代次数变化的曲线图 使用训练的模型预测真实数据 话不多说,上号 1. 导入程序需要的包以及数据集 import numpy as np import pandas as pd import matplotlib.pyplot as plt # m表示样本的数目,n表示特征的数目 X_train = <np.array> # X_train.
2021-03-21 17:16:54 133
原创 【机器学习代码模板】三步带你实现最简单的线性回归模型
1. 导入程序需要的包以及数据集 import numpy as np import pandas as pd import matplotlib.pyplot as plt # m表示样本的数目,n表示特征的数目 X_train = <np.array> # X_train.shape = (m, n + 1) y_train = <np.array> # y_train.shape = (n, 1) # >>> X_train # np.arra
2021-03-18 12:37:57 335 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人