自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Lovely-Pig的博客

专注于机器学习&深度学习

  • 博客(4)
  • 收藏
  • 关注

原创 【机器学习代码模板】苦苦等待梯度下降,不如对你的特征做点手脚

前言 这是【机器学习代码模板】系列的第四篇文章,之后会持续更新,敬请关注! 与第上一篇文章相比增加的地方 对数据进行特征处理 话不多说,上号 1. 导入程序需要的包以及对数据集进行处理 1.1 导入程序需要的包以及对数据集进行简单处理 import numpy as np import pandas as pd import matplotlib.pyplot as plt # m表示样本的数目,n表示特征的数目 # 假设我们已经有了数据集 dataset = <np.array>

2021-04-05 21:20:30 89

原创 【机器学习代码模板】把你的线性回归模型拉出来遛一遛

前言 这是【机器学习代码模板】系列的第三篇文章,之后会持续更新,敬请关注! 与第上一篇文章相比增加的地方 将数据集划分为training_set和test_set 在training_set上训练模型,在test_set上测试误差 话不多说,上号 1. 导入程序需要的包以及对数据集进行处理 import numpy as np import pandas as pd import matplotlib.pyplot as plt # m表示样本的数目,n表示特征的数目 # 假设我们已经有了数据集 d

2021-03-25 00:08:00 140

原创 【机器学习代码模板】用你的线性回归模型搞点儿事情

导言 这是【机器学习代码模板】系列的第二篇文章,之后会持续更新,敬请关注! 与第上一篇文章相比增加的地方 使用matplotlib画出训练误差随迭代次数变化的曲线图 使用训练的模型预测真实数据 话不多说,上号 1. 导入程序需要的包以及数据集 import numpy as np import pandas as pd import matplotlib.pyplot as plt # m表示样本的数目,n表示特征的数目 X_train = <np.array> # X_train.

2021-03-21 17:16:54 133

原创 【机器学习代码模板】三步带你实现最简单的线性回归模型

1. 导入程序需要的包以及数据集 import numpy as np import pandas as pd import matplotlib.pyplot as plt # m表示样本的数目,n表示特征的数目 X_train = <np.array> # X_train.shape = (m, n + 1) y_train = <np.array> # y_train.shape = (n, 1) # >>> X_train # np.arra

2021-03-18 12:37:57 335 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除