动态规划第二天
70. 爬楼
题目
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
算法思路
到达第n阶台阶有两种方式,第一种是从第n - 1再爬1阶,第二种是从第n - 2再爬2阶。
所以状态转移方程为:dp[n] = dp[n - 1] + dp[n - 2];
代码
class Solution {
public int climbStairs(int n) {
if(n == 0)
return 0;
if(n == 1)
return 1;
if(n == 2)
return 2;
int dp[] = new int[n + 1];
Arrays.fill(dp,Integer.MIN_VALUE);
dp[0] = 0;
dp[1] = 1;
dp[2] = 2;
for(int i = 3; i <= n; i++){
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
}
746. 使用最小花费爬楼梯
题目
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。
示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。
提示:
2 <= cost.length <= 1000
0 <= cost[i] <= 999
算法思路
首先要注意的是,这道题是可以从0或者1开始的,所以到达0或者1台阶所需要的最小花费为0。
确定状态,这里的状态为花费的费用。
确定选择,这里的选择为可以爬1阶,可以爬2阶。
确定状态注意方程:dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
到第i层需要花费的费用(可以想象成体力),min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
代码
class Solution {
public int minCostClimbingStairs(int[] cost) {
int n = cost.length;
int dp[] = new int[n + 1];
dp[0] = dp[1] = 0;
for(int i = 2; i <= n; i++){
int res = Math.min(dp[i - 1] + cost[i - 1],dp[i - 2] + cost[i - 2]);
dp[i] = res;
}
return dp[n];
}
}
本文探讨了两种爬楼问题:一是计算爬到楼顶的不同方法数量;二是寻找爬到楼顶的最低花费路径。通过动态规划的方法,给出了清晰的问题解决思路及Java实现代码。
478

被折叠的 条评论
为什么被折叠?



