动态规划第二天,70. 爬楼,746. 使用最小花费爬楼梯

本文探讨了两种爬楼问题:一是计算爬到楼顶的不同方法数量;二是寻找爬到楼顶的最低花费路径。通过动态规划的方法,给出了清晰的问题解决思路及Java实现代码。

动态规划第二天

70. 爬楼

题目

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶

示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶
算法思路

到达第n阶台阶有两种方式,第一种是从第n - 1再爬1阶,第二种是从第n - 2再爬2阶。

所以状态转移方程为:dp[n] = dp[n - 1] + dp[n - 2];

代码
class Solution {
    public int climbStairs(int n) {
        if(n == 0)
            return 0;
        if(n == 1)
            return 1;
        if(n == 2)
            return 2;
        
        int dp[] = new int[n + 1];
        Arrays.fill(dp,Integer.MIN_VALUE);
        dp[0] = 0;
        dp[1] = 1;
        dp[2] = 2;
        for(int i = 3; i <= n; i++){
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
}

746. 使用最小花费爬楼梯

题目

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。

  • 支付 15 ,向上爬两个台阶,到达楼梯顶部。
    总花费为 15 。

示例 2:

输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。

  • 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
  • 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
  • 支付 1 ,向上爬一个台阶,到达楼梯顶部。
    总花费为 6 。

提示:

2 <= cost.length <= 1000
0 <= cost[i] <= 999
算法思路

首先要注意的是,这道题是可以从0或者1开始的,所以到达0或者1台阶所需要的最小花费为0。

确定状态,这里的状态为花费的费用。

确定选择,这里的选择为可以爬1阶,可以爬2阶。

确定状态注意方程:dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

到第i层需要花费的费用(可以想象成体力),min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

代码
class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int n = cost.length;
        int dp[] = new int[n + 1];
        dp[0] = dp[1] = 0;
        for(int i = 2; i <= n; i++){
            int res = Math.min(dp[i - 1] + cost[i - 1],dp[i - 2] + cost[i - 2]);
            dp[i] = res;
        }
        return dp[n];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值