Python爬取豆瓣电影TOP250(名字+年份+评分+评论人数)

import re
import requests
import csv

# 拿到页面源代码
url = "https://movie.douban.com/top250"

headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36'
}
params = {
    'start': 0,
    'filter': ''
}
lib = {}
# 爬取后面的页数
for i in range(0, 10):
    params['start'] = i * 25

    resp = requests.get(url, headers=headers, params=params)
    page_content = resp.text

    # 开始解析
    obj = re.compile(r'<li>.*?<div class="item">.*?<span class="title">(?P<name>.*?)'
                     r'</span>.*?<p class="">.*?<br>(?P<year>.*?)&nbsp.*?'
                     r'<span class="rating_num" property="v:average">(?P<print>.*?)</span>'
                     r'.*?<span>(?P<people>.*?)</span>', re.S)
    result = obj.finditer(page_content)
    # 将每次的结果都放到一个新的字典中
    for i in result:
        lib[i] = i.groupdict()


f = open("douban.csv", "w", encoding="utf-8")
writer = csv.writer(f)
for i in lib:
    # print("名字:"+i.group('name')+" 年份:"+i.group('year').strip()+" 评分:"+i.group('print')+" 评价数:"+i.group('people'))
    dic = i.groupdict()
    dic['year'] = dic['year'].strip()
    writer.writerow(dic.values())

f.close()
resp.close()
print("200")

                
### Python 爬虫 豆瓣电影 Top250 代码 示例 以下是基于提供的引用内容以及专业知识编写的 Python 爬虫代码示例,用于爬取豆瓣电影 Top250 的相关信息: #### 所需库安装 为了运行此代码,需要先安装 `requests` 和 `beautifulsoup4` 库。可以通过以下命令安装这些依赖项: ```bash pip install requests beautifulsoup4 ``` #### 完整代码实现 以下是完整的 Python 爬虫代码示例,能够抓取豆瓣电影 Top250 页面中的电影名称、导演、年份、产地、类型、评分和评价人数。 ```python import requests from bs4 import BeautifulSoup def fetch_douban_top250(): base_url = "https://movie.douban.com/top250" headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' } movies_data = [] for start in range(0, 250, 25): # 遍历每一页 url = f"{base_url}?start={start}" try: response = requests.get(url, headers=headers) response.raise_for_status() # 检查请求状态码是否正常 soup = BeautifulSoup(response.text, 'html.parser') items = soup.select('ol.grid_view li') # 获取所有电影条目 for item in items: name = item.find('span', class_='title').get_text(strip=True) # 提取电影名称 info = item.find('div', class_='bd').find('p').get_text(strip=True).split('\n')[0].strip() director_and_cast = info.split('主演: ')[0] if '主演' in info else info.split('\n')[0] year = item.find('span', class_='year').get_text(strip=True)[1:-1] # 提取年份 rating = item.find('span', class_='rating_num').get_text(strip=True) # 提取评分 num_reviews = item.find('span', attrs={'class': None}).get_text(strip=True)[:-3] # 提取评价人数 movie_info = { 'name': name, 'director_and_cast': director_and_cast, 'year': year, 'rating': rating, 'num_reviews': num_reviews } movies_data.append(movie_info) except Exception as e: print(f"Error fetching data from {url}: {e}") return movies_data if __name__ == "__main__": top250_movies = fetch_douban_top250() for idx, movie in enumerate(top250_movies[:10], start=1): # 输出前10部电影的信息作为示例 print(f"{idx}. Name: {movie['name']}, Director/Cast: {movie['director_and_cast']}, Year: {movie['year']}, Rating: {movie['rating']}, Reviews: {movie['num_reviews']}") ``` 上述代码实现了对豆瓣电影 Top250 数据的爬取功能,并提取了电影的关键信息[^1][^3]。通过定义 HTTP 请求头模拟浏览器访问行为,同时使用 Beautiful Soup 解析 HTML 文档并提取所需字段[^4]。 --- ### CSV 文件保存扩展 如果需要将爬取的结果保存为 CSV 文件,则可以引入 `csv` 模块进行操作如下所示: ```python import csv with open('douban_top250.csv', mode='w', newline='', encoding='utf-8') as file: writer = csv.DictWriter(file, fieldnames=['name', 'director_and_cast', 'year', 'rating', 'num_reviews']) writer.writeheader() writer.writerows(top250_movies) print("Data has been saved to douban_top250.csv.") ``` 该部分逻辑补充了原始基础脚本的功能,使其更加实用[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值