Logistic回归(逻辑回归)及python代码实现

Logistic(Logistic Regression,LR)回归

原理讲解

在模式识别问题中,所关心的量是分类,比如是否会患有某种疾病,这时就不能用简单的线性回归来完成这个问题了。为了解决次问题,我们引入了非线性激活函数 g : R D → ( 0 , 1 ) g:{\mathbb R}^D\to(0,1) g:RD(0,1)来预测类别标签的后验概率 p ( y = 1 ∣ x ) p(y=1|\bf x) p(y=1∣x),其中 y ∈ { 0 , 1 } y\in\{0,1\} y{0,1},函数 g g g的作用是把线性函数的值域从实数区间挤压到0和1之间
在Logistic回归中,激活函数的表达式为: σ ( x ) = 1 1 + e − x \sigma(x)=\frac{1}{1+e^{-x}} σ(x)=1+ex1
标签 y = 1 y=1 y=1的后验概率为 p ( y = 1 ∣ x ) = σ ( w T x ) = 1 1 + e − w T x ⋯ ( 1 ) p(y=1|{\bf x})=\sigma({\bf w}^{\rm T}{\bf {x}})=\frac{1}{1+e^{-{\bf w}^{\rm T}{\bf {x}}}}\cdots(1) p(y=1∣x)=σ(wTx)=1+ewTx1(1)
这里, x = [ x 1 , ⋯   , x D , 1 ] T {\bf x}=[x_1,\cdots,x_D,1]^{\rm T} x=[x1,,xD,1]T w = [ w 1 , ⋯   , w D , b ] T {\bf w}=[w_1,\cdots,w_D,b]^{\rm T} w=[w1,,wD,b]T分别为D+1维的增广特征向量与增广权重向量
标签 y = 0 y=0 y=0的后验概率为 p ( y = 0 ∣ x ) = 1 − p ( y = 1 ∣ x ) = e − w T x 1 + e − w T x p(y=0|{\bf x})=1-p(y=1|{\bf x})=\frac{e^{-{\bf w}^{\rm T}{\bf {x}}}}{1+e^{-{\bf w}^{\rm T}{\bf {x}}}} p(y=0∣x)=1p(y=1∣x)=1+ewTxewTx
对式(1)进行变换后得到 w T x = log ⁡ p ( y = 1 ∣ x ) 1 − p ( y = 1 ∣ x ) = log ⁡ p ( y = 1 ∣ x ) p ( y = 0 ∣ x ) {\bf w}^{\rm T}{\bf {x}}=\log \frac{p(y=1|{\bf x})}{1-p(y=1|{\bf x})}=\log \frac{p(y=1|{\bf x})}{p(y=0|{\bf x})} wTx=log1p(y=1∣x)p(y=1∣x)=logp(y=0∣x)p(y=1∣x)上式左边为线性函数,右边为正反后验概率比值(几率)取对数,因此Logistic回归也称为对数几率回归

参数计算

LR采用交叉熵作为损失函数,使用梯度下降进行优化
假设存在N个训练样本 { ( x ( n ) , y ( n ) ) } n = 1 N \{({\bf x}^{(n)},y^{(n)})\}_{n=1}^N {(x(n),y(n))}n=1N,采用LR回归模型对每个样本 x ( n ) {\bf x}^{(n)} x(n)进行预测,输出其标签为1的后验概率,记为 y ^ ( n ) {\hat y}^{(n)} y^(n),即 y ^ ( n ) = σ ( w T x ( n ) ) , 1 ≤ n ≤ N {\hat y}^{(n)}=\sigma({\bf w}^{\rm T}{\bf {x}}^{(n)}),1\leq n\leq N y^(n)=σ(wTx(n)),1nN
由于 y ( n ) ∈ { 0 , 1 } y^{(n)}\in\{0,1\} y(n){0,1},样本 ( x ( n ) , y ( n ) ) ({\bf x}^{(n)},y^{(n)}) (x(n),y(n))的真实条件概率可以表示为 p r ( y ( n ) = 1 ∣ x ( n ) ) = y ( n ) , p_r(y^{(n)}=1|{\bf x}^{(n)})=y^{(n)}, pr(y(n)=1∣x(n))=y(n), p r ( y ( n ) = 0 ∣ x ( n ) ) = 1 − y ( n ) p_r(y^{(n)}=0|{\bf x}^{(n)})=1-y^{(n)} pr(y(n)=0∣x(n))=1y(n)
采用交叉熵损失函数,其风险函数为 R ( w ) = − 1 N ∑ n = 1 N ( p r ( y ( n ) = 1 ∣ x ( n ) ) log ⁡ y ^ ( n ) + p r ( y ( n ) = 0 ∣ x ( n ) ) log ⁡ ( 1 − y ^ ( n ) ) ) = − 1 N ∑ n = 1 N ( y ( n ) log ⁡ y ^ ( n ) + ( 1 − y ( n ) ) log ⁡ ( 1 − y ^ ( n ) ) ) {\mathcal R}({\bf w})=-\frac{1}{N}\sum_{n=1}^N \left(p_r(y^{(n)}=1|{\bf x}^{(n)})\log {\hat y}^{(n)}+p_r(y^{(n)}=0|{\bf x}^{(n)})\log (1-{\hat y}^{(n)})\right) \\ =-\frac{1}{N}\sum_{n=1}^N\left(y^{(n)}\log {\hat y}^{(n)}+(1-y^{(n)})\log (1-{\hat y}^{(n)}) \right) R(w)=N1n=1N(pr(y(n)=1∣x(n))logy^(n)+pr(y(n)=0∣x(n))log(1y^(n)))=N1n=1N(y(n)logy^(n)+(1y(n))log(1y^(n)))
风险函数关于参数 w \bf w w的偏导数为 ∂ R ( w ) ∂ w = − 1 N ∑ n = 1 N ( y ( n ) y ^ ( n ) ( 1 − y ^ ( n ) ) y ^ ( n ) x ( n ) − ( 1 − y ( n ) ) y ^ ( n ) ( 1 − y ^ ( n ) ) 1 − y ^ ( n ) x ( n ) ) = − 1 N ∑ n = 1 N ( y ( n ) ( 1 − y ^ ( n ) ) x ( n ) − ( 1 − y ( n ) ) y ^ ( n ) x ( n ) ) = − 1 N ∑ n = 1 N x ( n ) ( y ( n ) − y ^ ( n ) ) \frac{\partial {\mathcal R}({\bf w})}{\partial {\bf w}}=-\frac{1}{N}\sum_{n=1}^N\left(y^{(n)}\frac{{\hat y}^{(n)}(1-{\hat y}^{(n)})}{{\hat y}^{(n)}}{\bf x}^{(n)}-(1-y^{(n)})\frac{{\hat y}^{(n)}(1-{\hat y}^{(n)})}{1-{\hat y}^{(n)}}{\bf x}^{(n)} \right) \\ =-\frac{1}{N}\sum_{n=1}^N\left(y^{(n)}(1-{\hat y}^{(n)}){\bf x}^{(n)}-(1-y^{(n)}){\hat y}^{(n)}{\bf x}^{(n)} \right) \\ =-\frac{1}{N}\sum_{n=1}^N{\bf x}^{(n)}(y^{(n)}-{\hat y}^{(n)}) wR(w)=N1n=1N(y(n)y^(n)y^(n)(1y^(n))x(n)(1y(n))1y^(n)y^(n)(1y^(n))x(n))=N1n=1N(y(n)(1y^(n))x(n)(1y(n))y^(n)x(n))=N1n=1Nx(n)(y(n)y^(n))
由此我们可以采用梯度下降法更新参数最终得到合适的参数 w \bf w w

python代码实现

生成数据集

我们通过下面的代码自行生成一个样本数量为100的数据集

import numpy as np
import matplotlib.pyplot as plt

# 设置随机种子,以便结果可复现
np.random.seed(42)

# 生成随机数据
# 两个特征的均值和方差
mean_1 = [2, 2]
cov_1 = [[2, 0], [0, 2]]
mean_2 = [-2, -2]
cov_2 = [[1, 0], [0, 1]]

# 生成类别1的样本
X1 = np.random.multivariate_normal(mean_1, cov_1, 50)
y1 = np.zeros(50)

# 生成类别2的样本
X2 = np.random.multivariate_normal(mean_2, cov_2, 50)
y2 = np.ones(50)

# 合并样本和标签
X = np.concatenate((X1, X2), axis=0)
y = np.concatenate((y1, y2))

# 绘制散点图
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1, edgecolor='k')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Logistic Regression Dataset')
plt.show()

运行结果如下图所示
在这里插入图片描述
图中,类别1为右上部分,标签为0;类别2为左下部分,标签为1

不使用其他库实现

定义激活函数(标准Logistic函数即Sigmoid函数)

def sigmoid(x):
    if x>0:
        return 1.0/(1.0+np.exp(-x))
    else:
        return np.exp(x)/(1.0+np.exp(x))

定义LogisticRegression类

class LogisticRegression:
    def __init__(self, learning_rate=0.01, num_iterations=1000):
        self.learning_rate = learning_rate
        self.num_iterations = num_iterations
        self.weights = None
        self.bias = None

    def fit(self, X, y):
        num_samples, num_features = X.shape

        # 初始化权重和偏置
        self.weights = np.zeros(num_features)
        self.bias = 0

        # 梯度下降
        for _ in range(self.num_iterations):
            linear_model = np.dot(X, self.weights) + self.bias
            y_pred = sigmoid(linear_model)

            dw = (1 / num_samples) * np.dot(X.T, (y_pred - y))
            db = (1 / num_samples) * np.sum(y_pred - y)

            self.weights -= self.learning_rate * dw
            self.bias -= self.learning_rate * db

    def predict_prob(self, X):
        linear_model = np.dot(X, self.weights) + self.bias
        y_pred = sigmoid(linear_model)
        return y_pred

    def predict(self, X, threshold=0.5):
        y_pred_prob = self.predict_prob(X)
        y_pred = np.zeros_like(y_pred_prob)
        y_pred[y_pred_prob >= threshold] = 1
        return y_pred

调用LogisticRegression类解决分类问题

# 创建 Logistic 回归模型
    logreg = LogisticRegression()
    
    # 训练模型
    logreg.fit(X, y)
    
    # 预测样本
    X_new = np.array([[2.5, 2.5], [-6.0, -4.0]])
    y_pred_prob = logreg.predict_prob(X_new)
    y_pred = logreg.predict(X_new)
    
    print("Predicted Probabilities:", y_pred_prob)
    print("Predicted Labels:", y_pred)

输出结果为
在这里插入图片描述
预测样本1(2.5,2.5)位于右上部分属于类别1,真实标签为0;预测样本2(-6,-4)位于左下部分属于类别2,真实标签为1,对比输出结果可知,该分类器已训练得合适参数,可完成分类任务

使用sklearn库

我们可以通过使用sklearn库来简洁地实现LR

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

#所使用数据集同上X,y

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建Logistic回归模型
logreg = LogisticRegression()

# 训练模型
logreg.fit(X_train, y_train)

# 预测测试集
y_pred = logreg.predict(X_test)

# 计算预测准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

最终测试集上计算得到的准确率accuracy为1,可见该分类器的效果非常好

拓展

logistic回归可以用于分类非线性可分的数据。尽管logistic回归本身是一个线性分类器,但可以通过引入多项式特征、交互特征、组合特征等方法来扩展其能力,从而处理非线性的分类问题。
具体来说,可以通过特征工程的方式将原始特征进行变换,以引入非线性关系。例如,可以通过添加多项式特征,将原始特征的高阶项加入到模型中,例如原始特征的平方项、立方项等。还可以引入交互特征,将不同特征之间的乘积或分割点(例如,做差或做除)作为新的特征。
通过引入这些非线性特征,logistic回归可以更好地捕捉到数据中的非线性关系,从而能够更好地分类非线性可分的数据。需要注意的是,在引入非线性特征时,可能需要进行正则化或其他模型调优技巧,以避免过拟合问题。

  • 21
    点赞
  • 105
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
逻辑回归是一种二分类机器学习算法,适用于输入变量与输出变量之间的线性关系建模。逻辑回归的目标是根据输入变量的线性组合预测输出变量的概率。 下面以一个实例来介绍逻辑回归的应用和Python代码实现。 假设我们有一个数据集,包含了一些学生的考试成绩和是否通过考试的标签。我们希望使用逻辑回归来根据学生的考试成绩预测他是否能够通过考试。 首先,我们需要导入所需的库,如numpy和sklearn: ``` import numpy as np from sklearn.linear_model import LogisticRegression ``` 然后,我们需要准备数据。假设我们有一个包含n个样本和m个特征的矩阵X,以及一个包含n个标签的向量y。我们可以使用numpy创建这些数组: ``` X = np.array([[score1, score2] for score1, score2 in zip(scores1, scores2)]) y = np.array(passed) ``` 接下来,我们可以使用sklearn中的LogisticRegression类来拟合逻辑回归模型: ``` model = LogisticRegression() model.fit(X, y) ``` 拟合模型后,我们可以使用该模型进行预测。例如,我们可以使用模型来预测一个学生在考试1得分为80,考试2得分为75时是否能够通过考试: ``` prediction = model.predict([[80, 75]]) ``` 最后,我们可以根据预测结果输出相应的信息: ``` if prediction == 1: print("该学生能够通过考试") else: print("该学生不能通过考试") ``` 通过上述步骤,我们可以使用逻辑回归模型对学生的考试成绩进行预测,并得到相应的分类结果。 以上就是逻辑回归实例及Python代码实现的简要介绍。通过这个例子,我们可以看到逻辑回归在二分类问题中的应用以及如何使用Python实现逻辑回归模型。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值