素数的判断(求解100以内所有素数)

博客介绍了如何优化素数判断算法,从暴力法到埃氏筛法,通过减少判断次数提升效率。优化点包括只判断到√n,以及利用数的对称性减少重复计算,最后讨论了算法的时间复杂度。
摘要由CSDN通过智能技术生成

1.暴力求解法:设待判断的数为n(n>1),则n为素数的条件为:n不能被从2~n-1的数整除,算法的复杂度o(n)

#include<cstdio>
bool isprime(int n){
	for(int i=2;i<n-1;i++){
		if(n%i==0){
			return false;
		}
	}
}
int main(){
	for(int i=2;i<=100;i++){
		if(isprime(i)){
			printf("%d ",i);
		}
	}
} 

2.暴力法的改进:随机举出几个非素数:

6=2*3=3*2

20=2*10=4*5=5*4=10*2

36=2*18=3*12=4*9=6*6=9*4=12*3=18*2

可以看出n的拆分具有对称性,因此之前的暴力法相当于进行了重复判断,因此只需要找出非素数的“中间点”作为判断结束的标志即可,中间节点为√n(证明略),因此只需判断2~√n的数即可,改进的时间复杂度为o(√n)

#include<cstdio>
#include<cmath>
bool isprime(int n){
	int sqr=int(sqrt(1.0*n));//n必须转为浮点数才可以进行sqrt运算 
	for(int i=2;i<sqr;i++){
		if(n%i==0){
			return false;
		}
	}
}
int main(){
	for(int i=2;i<=100
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值