1.暴力求解法:设待判断的数为n(n>1),则n为素数的条件为:n不能被从2~n-1的数整除,算法的复杂度o(n)
#include<cstdio>
bool isprime(int n){
for(int i=2;i<n-1;i++){
if(n%i==0){
return false;
}
}
}
int main(){
for(int i=2;i<=100;i++){
if(isprime(i)){
printf("%d ",i);
}
}
}
2.暴力法的改进:随机举出几个非素数:
6=2*3=3*2
20=2*10=4*5=5*4=10*2
36=2*18=3*12=4*9=6*6=9*4=12*3=18*2
可以看出n的拆分具有对称性,因此之前的暴力法相当于进行了重复判断,因此只需要找出非素数的“中间点”作为判断结束的标志即可,中间节点为√n(证明略),因此只需判断2~√n的数即可,改进的时间复杂度为o(√n)
#include<cstdio>
#include<cmath>
bool isprime(int n){
int sqr=int(sqrt(1.0*n));//n必须转为浮点数才可以进行sqrt运算
for(int i=2;i<sqr;i++){
if(n%i==0){
return false;
}
}
}
int main(){
for(int i=2;i<=100