注:本学期刘老师计算理论课程知识点总结
可计算性
可判定=有算法
ATM 图灵可识别 非图灵可判定
ATM的补 非图灵可识别
可判定问题举例
不可判定问题举例
1930’s人们开始考虑算法的精确定义
1900年巴黎世界数学家大会, Hilbert问题
1933, Kurt Gödel, 递归函数
1936, Alonzo Church, λ-calculus
1936, Alan Turing, 判定图灵机(判定器)
Church 和 Turing 证明这三种定义等价
计算机能力的极限
即使未来几年量子计算机制造成功,
人们能解决的问题类并不会变大
一些自然构造问题
- ADFA={<B,w>|DFA B接受串w}可判定
- ANFA={<B,w>|NFA B接受串w}可判定
- 空性质测试