可计算性|计算理论

本文总结了刘老师的计算理论课程,重点探讨了可计算性的概念,包括可判定性和图灵可识别性。提及ATM(图灵可识别)与非图灵可判定问题,并列举了可判定和不可判定问题实例。1930年代,通过Kurt Gödel的递归函数、Alonzo Church的λ-calculus和Alan Turing的图灵机,定义了算法的精确定义。讨论了计算机能力的极限,即使未来有量子计算机,能解决的问题类别也不会显著增加。此外,还阐述了DFA和NFA的接受串问题及空性质测试的可判定性,以及ATM的不可判定性证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注:本学期刘老师计算理论课程知识点总结

可计算性

可判定=有算法
ATM 图灵可识别 非图灵可判定
ATM的补 非图灵可识别
可判定问题举例
不可判定问题举例

1930’s人们开始考虑算法的精确定义
1900年巴黎世界数学家大会, Hilbert问题
1933, Kurt Gödel, 递归函数
1936, Alonzo Church, λ-calculus
1936, Alan Turing, 判定图灵机(判定器)
Church 和 Turing 证明这三种定义等价
计算机能力的极限
即使未来几年量子计算机制造成功,
人们能解决的问题类并不会变大
一些自然构造问题
在这里插入图片描述

  • ADFA={<B,w>|DFA B接受串w}可判定
    在这里插入图片描述
  • ANFA={<B,w>|NFA B接受串w}可判定
    在这里插入图片描述
  • 空性质测试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值