Floyd算法和Dijkstra算法

  1. 问题
     1.用Floyd算法求解下图各个顶点的最短距离。写出Floyd算法的伪代码和给出距离矩阵(顶点之间的最短距离矩阵)。

 2.对于下图使用Dijkstra算法求由顶点a到顶点h的最短路径。

[描述算法问题,首选形式化方式(数学语言),其次才是非形式化方式(日常语言)

  1. 解析

  2. 任意节点i到j的最短路径两种可能:
    1)直接从i到j;
    2)从i经过若干个节点k到j。map(i,j)表示节点i到j最短路径的距离,对于每一个节点k,检查map(i,k)+map(k,j)小于map(i,j),如果成立,map(i,j) = map(i,k)+map(k,j);遍历每个k,每次更新的是除第k行和第k列的数。

  3. 就是从最初规定的出发的那个点开始进行传递,然后先假设最初点s到其余所有的点距离为无穷大,然后逐层更新每个点的最短路径。
    [问题的理解和推导,可用电子版直接在此编写,也可用纸笔推导,拍照嵌入本文档]

  4. 设计

[核心伪代码]
4. 分析

  1. 时间复杂度:O(n3);空间复杂度:O(n2);
  2. 邻接矩阵写法下:O(n^2)
    [算法复杂度推导]
  3. 源码
    https://github.com/1796380574/-/blob/main/2
    [github源码地址]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值