- 问题
1.用Floyd算法求解下图各个顶点的最短距离。写出Floyd算法的伪代码和给出距离矩阵(顶点之间的最短距离矩阵)。
2.对于下图使用Dijkstra算法求由顶点a到顶点h的最短路径。
[描述算法问题,首选形式化方式(数学语言),其次才是非形式化方式(日常语言)
-
解析
-
任意节点i到j的最短路径两种可能:
1)直接从i到j;
2)从i经过若干个节点k到j。map(i,j)表示节点i到j最短路径的距离,对于每一个节点k,检查map(i,k)+map(k,j)小于map(i,j),如果成立,map(i,j) = map(i,k)+map(k,j);遍历每个k,每次更新的是除第k行和第k列的数。 -
就是从最初规定的出发的那个点开始进行传递,然后先假设最初点s到其余所有的点距离为无穷大,然后逐层更新每个点的最短路径。
[问题的理解和推导,可用电子版直接在此编写,也可用纸笔推导,拍照嵌入本文档] -
设计
[核心伪代码]
4. 分析
- 时间复杂度:O(n3);空间复杂度:O(n2);
- 邻接矩阵写法下:O(n^2)
[算法复杂度推导] - 源码
https://github.com/1796380574/-/blob/main/2
[github源码地址]