计组学习笔记
文章平均质量分 68
记录平时学习的一些问题
不依法度
只是向上走,不必听自暴自弃者流的话。有一分热,发一分光。
展开
-
JMU软件计组期末复习总结
计组复习原创 2021-12-31 10:13:32 · 1720 阅读 · 0 评论 -
计组:浮点数的存储方式
关于小数在计算机内部存储造成精度误差二进制在进行整型存储时非常精确,但是对于小数比如0.73252-1=0.52-2=0.252-3=0.1252-4=0.0625,2-5=0.03125…0.7325=0.5+0.125+0.0625+0.03125+…因为小数部分只能由2-1,2-2,2-3,2-4…构成( 计算机只能用这些个 1/(2^n) 之和来表达十进制的小数),但是因为计算机不可能提供无限的空间让程序去存储这些二进制小数,也就是不可能将小位数一直延申下去,这就必须省略掉一些极原创 2021-09-18 15:50:41 · 563 阅读 · 0 评论 -
用于计算机数据存储的补码
在这篇博客里大概展示了一下int型数据在计算机里的存储形式(补码)但为什么用补码进行数据的存储呢?如果采用原码进行乘除运算可取绝对值直接计算,按同号异号判断所得结果的正负(单独处理符号位),但是原码在进行加减运算时运算规则就比较复杂了。比如1 1101+0 1011(-13+11),表面上进行加法运算,但实际是1011-1101,即原码在进行加减运算的时候不仅要根据指令进行加减还要根据两数的符号位决定实际操作的加减。所以这里引用了补码:(其实先是试了反码)原理:56-24=32,(56+76)%1原创 2021-09-16 20:44:07 · 415 阅读 · 0 评论 -
关于整型数值在计算机内部的存储
int在计算机内占四个字节,一个字节八位所以int可以用32个0~32个1这232种表示方式表示但因为int即表示正数也表示负数,所以这232中表示方法分了一半给负数,剩下的一半既要表示整数也包括0,所以int的范围是-231~231-1整型在计算机用补码表示正数:#include<iostream>#include<math.h>using namespace std;void print(int sum){ for (int i = 31; i >= 0原创 2021-09-15 20:49:46 · 326 阅读 · 0 评论