你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,能够偷窃到的最高金额。
动态规划
在任意第i个位置所偷的最高金额为 1.和2.取较大者
1.第i-2个位置所偷最高金额加上当前位置可偷金额
2.第i-1个位置所偷最高金额
注意要考虑首尾相连的问题 偷了第一个屋子 就不能偷最后一个 反之一样
所以要划分两个区间分别求解取最大值
区间1:0 ->(数组长度-2)
区间2:1 -> (数组长度-1)
class Solution {
public int rob(int[] nums) {
int n = nums.length;
if(n == 0)
return 0;
if(n == 1)
return nums[0];
if(n == 2)
return Math.max(nums[0], nums[1]);
return Math.max(robrange(nums, 0, n - 2), robrange(nums, 1, n-1));
}
public int robrange(int[] nums, int start, int end){
int first = nums[start];
int second = Math.max(nums[start], nums[start+1]);
for(int i = start + 2; i <= end; i++){
int temp = second;
second = Math.max(first + nums[i], second);
first = temp;
}
return second;
}
}