数据分析-ESG对就业的影响因素分析

可再生能源对就业的影响
一、引言
1.1 研究背景

在全球应对气候变化、追求可持续发展的大背景下,可再生能源正以前所未有的速度蓬勃发展。随着传统化石能源的逐渐枯竭以及其在使用过程中引发的环境污染、温室气体排放等问题日益严重,世界各国纷纷将目光投向可再生能源领域,将其视为未来能源发展的重要方向。

太阳能作为可再生能源的重要组成部分,近年来取得了显著的进展。太阳能光伏发电技术不断创新,成本持续下降,使得太阳能在全球能源结构中的占比逐年提高。许多国家和地区建设了大规模的太阳能电站,不仅为当地提供了清洁的电力,还带动了相关产业的发展。例如,中国在太阳能光伏领域处于世界领先地位,拥有完整的产业链,从多晶硅的生产到太阳能电池板的制造,再到光伏电站的建设和运营,形成了庞大的产业集群。

风能也是可再生能源发展的热点之一。陆上和海上风力发电项目不断涌现,风力发电机组的单机容量不断增大,发电效率不断提高。欧洲一些国家在海上风电领域具有丰富的经验和先进的技术,如丹麦、英国等,海上风电已经成为其重要的能源来源之一。此外,生物质能、水能、地热能等可再生能源也在不同地区得到了广泛的开发和利用。

能源转型不仅是能源结构的调整,也对就业市场产生了深远的影响。在传统能源行业,如煤炭、石油和天然气领域,随着技术的进步和产业结构的调整,就业岗位逐渐减少。煤炭开采行业由于自动化程度的提高和对清洁能源的需求增加,就业人数呈现下降趋势。

相反,可再生能源行业的兴起创造了大量的就业机会。从可再生能源项目的规划、设计、建设,到设备的制造、安装、维护,再到相关的研发、咨询、金融服务等环节,都需要大量的专业人才。例如,在太阳能光伏产业中,需要光伏工程师、电气工程师、安装工人等;在风力发电产业中,需要风力发电机设计师、运维工程师等。

然而,可再生能源行业的就业增长也面临一些挑战。一方面,该行业对从业人员的技能要求较高,需要具备相关的专业知识和技能,而目前劳动力市场上符合要求的人才相对短缺。另一方面,可再生能源项目的发展受到政策、市场等多种因素的影响,就业岗位的稳定性和持续性也存在一定的不确定性。

1.2 研究目的


虽然目前已经有一些研究关注可再生能源与就业之间的关系,但结论并不一致。部分研究表明,可再生能源的发展能够显著促进就业增长,通过带动相关产业的发展创造大量的直接和间接就业岗位。然而,也有研究认为,可再生能源行业的就业创造效应可能受到技术进步、产业结构等因素的制约,其对就业的促进作用并不明显。

本研究旨在通过实证分析,深入探究可再生能源对就业的具体影响机制和程度。具体而言,将分析可再生能源消费的增加是否能够降低失业率,以及不同类型的可再生能源(如太阳能、风能、水能等)对就业的影响是否存在差异。同时,还将考虑可再生能源发展的不同阶段和地区差异,以更全面地了解可再生能源与就业之间的关系。

政府在可再生能源发展和就业促进中扮演着重要的角色。政府可以通过制定相关政策,如补贴政策、税收优惠政策、可再生能源配额制度等,来推动可再生能源的发展。同时,政府还可以通过加强教育和培训,提高劳动力素质,为可再生能源行业提供充足的人力资源。

然而,政府治理的效果可能受到多种因素的影响,如政府的政策执行力、监管能力、政策的稳定性等。本研究将检验政府治理在可再生能源与就业关系中的调节效应,即政府治理水平的高低是否会影响可再生能源对就业的促进作用。如果存在调节效应,将进一步分析政府治理的哪些方面对调节效应的影响最为显著,为政府制定更加有效的政策提供理论依据。

1.3 研究意义


本研究丰富了可再生能源与就业关系的理论研究。目前,关于可再生能源对就业影响的研究还处于不断发展的阶段,相关理论还不够完善。本研究通过综合考虑多种因素,如政府治理、技术进步、产业结构等,构建了一个更为全面的理论模型,深入分析了可再生能源对就业的影响机制和调节因素,为该领域的理论发展做出了贡献。

此外,本研究还为政府治理理论在能源和就业领域的应用提供了新的视角。政府治理在促进可再生能源发展和就业增长方面的作用一直是学术界和政策界关注的焦点。本研究通过实证检验政府治理的调节效应,揭示了政府治理与可再生能源、就业之间的内在联系,为政府治理理论的进一步发展提供了实证支持。

本研究的结果对于政府制定能源政策和就业政策具有重要的参考价值。如果研究发现可再生能源能够显著促进就业增长,政府可以加大对可再生能源领域的投入,制定更加积极的可再生能源发展政策,以实现能源转型和就业增长的双重目标。同时,如果政府治理的调节效应显著,政府可以通过提高自身的治理水平,加强政策的执行力和监管能力,优化政策环境,提高可再生能源对就业的促进作用。

对于企业而言,本研究有助于其了解可再生能源行业的发展趋势和就业需求,为企业的战略决策提供参考。企业可以根据研究结果,合理调整自身的产业布局,加大在可再生能源领域的投资和研发力度,积极培养和引进相关专业人才,以适应能源转型和市场需求的变化。


二、文献综述


2.1 可再生能源对就业的影响


王慎迎(2023)深入剖析了可再生能源政策与绿色就业之间的关系。通过构建计量经济模型,对不同类型的可再生能源政策进行评估,发现补贴政策和可再生能源配额制度等政策能够有效促进绿色就业的增长,尤其是在可再生能源设备制造和项目建设领域[1]。胡燕子(2022)运用投入产出模型和计量分析方法,研究了中国可再生能源发展对多个方面的影响。结果表明,可再生能源的发展不仅能够显著降低碳排放,推动经济增长,还对就业具有积极的拉动作用。从产业关联的角度来看,可再生能源产业的发展能够带动上下游相关产业的就业增长,如原材料供应、设备制造、安装维护等环节[2]。孙冬、刘言言和袁家海(2022)对国内外关于可再生能源就业效应的研究进行了系统梳理。他们指出,可再生能源的发展在短期内能够创造大量的就业岗位,特别是在项目建设阶段,如风力发电场和太阳能电站的建设。而从长期来看,随着可再生能源产业的成熟和技术进步,就业岗位将更多地集中在技术研发、运维管理和相关服务领域。同时,不同类型的可再生能源对就业的影响存在差异,例如风能和太阳能的就业效应在不同地区和发展阶段表现不同[3]。


2.2 政府治理在能源 - 就业关系中的作用


陈瀛和彭婉(2021)分析了政府在可再生能源投资和就业促进中的作用。他们认为,政府通过制定合理的投资政策和监管措施,能够引导社会资本流向可再生能源领域,从而促进可再生能源产业的发展和就业增长。同时,政府的政策支持还能够降低可再生能源企业的运营成本,提高其市场竞争力,进一步带动就业[4]。马林茂(2019)构建了可再生能源发展的影响因素模型,其中政府治理是重要的影响因素之一。研究发现,政府的政策稳定性、政策执行力以及对可再生能源技术研发的支持力度,都会对可再生能源的发展和就业产生重要影响。稳定的政策环境能够吸引更多的企业投资可再生能源项目,从而创造更多的就业机会[5]。何凌云、杨晓蕾、钟章奇等人(2019)从整体和行业视角分析了可再生能源投资的就业效应,并探讨了政府治理的作用。他们指出,政府在可再生能源投资和就业促进中发挥着关键作用,通过制定产业政策、提供资金支持和加强监管等方式,能够优化可再生能源产业结构,提高产业的就业吸纳能力。同时,政府还可以通过加强教育和培训,提高劳动力素质,为可再生能源行业提供充足的人力资源[6]。

2.3 文献综述


   综合上述文献可以看出,现有研究在可再生能源对就业的影响以及政府治理在能源 - 就业关系中的作用方面已经取得了一定的成果。多数学者认为可再生能源的发展对就业具有积极的促进作用,并且政府治理在其中发挥着重要的引导和支持作用。然而,现有研究仍存在一些不足之处。一方面,在研究方法上,多数研究采用传统的计量经济模型或投入产出模型,对于一些复杂的非线性关系和动态变化的分析还不够深入。另一方面,在研究内容上,对于可再生能源对就业影响的异质性分析还不够全面,例如不同地区、不同行业以及不同发展阶段的差异。同时,对于政府治理的调节效应的研究还相对较少,尤其是对政府治理的具体维度(如政策执行力、监管能力等)如何影响可再生能源与就业关系的研究还不够深入。本研究将在现有研究的基础上,进一步深化对可再生能源与就业关系的理解,通过更加严谨的研究方法和全面的分析,深入探究可再生能源对就业的影响机制以及政府治理的调节效应,为相关政策的制定和实施提供更加科学的依据。

三、数据与方法


3.1 数据来源


  本研究数据主要来源于两个渠道,构建起多维且具有权威性的数据集基础。其一为 Excel 数据集,该数据集经多轮筛选与整合,涵盖了全球多个国家和地区在不同年份的关键指标数据。数据采集自各国官方统计机构发布的统计年鉴、能源部门专项报告等,通过人工整理与交叉核对,确保数据的准确性与完整性。其二是世界银行 ESG(环境、社会和治理)数据库,该数据库以其严谨的统计标准和广泛的覆盖范围,为研究提供了宏观层面的核心数据支撑。世界银行通过与各国政府、国际组织合作,运用统一的统计方法和指标体系,对全球各国的经济、社会和环境数据进行长期跟踪与系统记录。在可再生能源消费、失业率等关键指标上,世界银行数据库通过专业的调查团队和先进的数据分析技术,保障了数据的时效性与可靠性。两个数据来源相互补充,Excel 数据集侧重特定区域和细分领域的详细数据,世界银行 ESG 数据库则从全球宏观视角提供权威基准,共同为本研究奠定坚实的数据基础。


3.2 变量定义


3.2.1 因变量


总失业率(占总劳动力的百分比)作为因变量,直接反映研究核心关注的就业状况。该指标依据国际劳工组织(ILO)的统一标准进行统计,将处于劳动年龄、具备劳动能力但未获得有偿工作岗位的人口数量,与总劳动力人口数量进行比例计算。其数值的变化直观体现就业市场的松紧程度,是衡量经济社会就业情况的关键指标。在本研究中,总失业率的波动将作为评估可再生能源发展及其他因素对就业影响的核心观测对象。


3.2.2 自变量


可再生能源消费(占终端能源消费总量的百分比)作为自变量,表征可再生能源在能源消费结构中的占比情况。该指标通过统计太阳能、风能、水能、生物质能等可再生能源在终端能源消费环节的实际消费量,与终端能源消费总量进行对比得出。其数值的提升反映可再生能源在能源领域的发展态势,是研究可再生能源对就业影响的核心驱动变量,直接关联可再生能源产业的规模扩张与就业吸纳能力。


3.2.3 调节变量


综合政府治理变量整合了政府效能评估、监管质量、法治水平、腐败控制、话语权与问责制、政治稳定与无暴力 / 恐怖主义等多个维度。各维度数据均来自世界银行全球治理指标体系,通过主成分分析等方法,将六个维度的指标合成一个综合变量,全面反映政府治理能力与水平。若综合变量检验效果不佳,则采用替代方案 —— 政府效能评估,该指标从政府政策制定与执行的有效性、公共服务供给能力等方面,直接衡量政府在推动可再生能源发展和就业促进中的核心作用,用于检验其对可再生能源与就业关系的调节效应。


3.2.4 控制变量


必选控制变量国内生产总值年增长率,是衡量经济增长速度的关键指标,直接影响就业市场的整体规模与结构。经济增长带来的产业扩张与投资增加,会对就业产生直接拉动作用,将其纳入模型可有效分离可再生能源对就业影响中经济增长因素的干扰。可选控制变量方面,人口密度反映劳动力供给的空间分布与集聚效应,高人口密度地区往往具备更丰富的劳动力资源与更广阔的消费市场,可能影响可再生能源产业的布局与就业吸纳能力;教育水平通过成人识字率、政府教育支出等指标衡量,决定劳动力素质与技能结构,高素质劳动力能够更好地适应可再生能源产业技术密集型的发展需求,促进产业创新与就业质量提升;互联网使用人数比例反映数字经济发展水平,与可再生能源产业的数字化转型与智能化发展密切相关,影响产业的生产效率与就业岗位需求;化石能源消费占比体现能源结构转型的程度,与可再生能源存在替代关系,其变化会影响能源产业的就业结构调整;能源净进口比例反映国家能源安全状况与对外依存度,可能影响政府在可再生能源领域的投资决策与产业发展战略,进而影响就业;基尼系数衡量收入分配公平程度,收入分配状况会影响消费市场的活力与社会稳定,间接影响可再生能源产业的市场需求与就业环境;预期寿命或营养不良患病率反映人口健康状况,健康的劳动力是产业发展的基础,影响劳动力供给质量与工作效率;科技期刊文章数量体现科技研发水平,与可再生能源技术创新能力直接相关,决定产业的竞争力与就业岗位的技术含量。

3.3 数据预处理


3.3.1 缺失值处理


删除法适用于缺失数据占比较小且缺失模式为完全随机缺失(MCAR)的情况。通过 Stata 的 “drop if” 命令,直接删除包含缺失值的观测样本,确保剩余数据的完整性与一致性,但可能导致样本量减少与信息损失。插补法针对缺失比例适中的变量,采用多重填补法(MICE)。利用 Stata 的 “mi” 命令,基于其他变量的相关关系,构建多个填补模型,生成多个完整数据集,通过综合分析得出缺失值的估计值进行填补,既能保留数据信息,又能有效处理缺失值对后续分析的影响。


3.3.2 数据清洗


异常值检测采用箱线图与 Z - score 法相结合的方式。通过绘制箱线图直观识别变量数据中的极端值,对于超出 1.5 倍四分位距(IQR)范围的数据点视为潜在异常值;同时,计算 Z - score 值,将绝对值大于 3 的数据点认定为异常值。针对异常值,采用稳健统计量替换法,用中位数或调整后的均值替代异常值,避免极端数据对统计分析结果的过度干扰,确保数据分布的合理性与分析结果的稳健性。

3.4 分析方法


3.4.1 描述性统计


运用 Stata 的 “summarize” 命令,计算各变量的均值、中位数、标准差、最小值和最大值等指标,全面刻画变量的集中趋势与离散程度。均值反映变量的平均水平,中位数体现数据的中间位置,标准差衡量数据的离散程度,最小值与最大值则展示数据的取值范围。通过绘制直方图、茎叶图等可视化图表,直观呈现变量的数据分布形态,为后续分析提供基础数据特征描述。


3.4.2 相关性分析


采用皮尔逊相关系数(Pearson correlation coefficient)量化变量之间的线性相关程度。在 Stata 中使用 “correlate” 命令,计算各变量两两之间的相关系数,相关系数取值范围在 - 1 到 1 之间,绝对值越接近 1 表明相关性越强,正值表示正相关,负值表示负相关。通过构建相关系数矩阵,结合显著性检验(p 值),筛选出与因变量相关性显著且合理的控制变量,为模型构建提供依据。
3.4.3 线性回归
构建简单线性回归模型,以总失业率为因变量,可再生能源消费为自变量,模型表达式为:
Unemploymentit=α+βRenewableEnergyit+εit
。运用 Stata 的 “regress” 命令进行最小二乘法(OLS)估计,通过检验回归系数
β
的显著性,判断可再生能源消费对总失业率的影响方向与程度,初步分析两者之间的线性关系。


3.4.4 多因素回归


在简单线性回归基础上,纳入控制变量与调节变量,构建多因素回归模型:
Unemploymentit=α+β1RenewableEnergyit+β2ControlVariablesit+β3Moderatorit+β4RenewableEnergyit×Moderatorit+εit
。采用逐步回归法,通过 “regress” 命令逐步引入控制变量,根据模型拟合优度(
R2
)、调整后的
R2
、F 检验显著性等指标,筛选出最优的控制变量组合,准确评估各因素对就业的综合影响。
3.4.5 调节效应检验
通过构建交互项
RenewableEnergyit×Moderatorit
,将其纳入多因素回归模型,运用 Stata 的 “regress” 命令进行估计。通过检验交互项系数
β4
的显著性判断调节效应是否存在,若系数显著,则表明政府治理在可再生能源与就业关系中发挥调节作用。进一步通过分组回归、斜率差异检验等方法,深入分析调节效应的作用机制与影响程度。
3.4.6 诊断检验
异方差性检验采用怀特检验(White test),在 Stata 中通过 “estat imtest, white” 命令实现。若检验结果的 p 值小于显著性水平(通常为 0.05),则拒绝同方差假设,表明存在异方差问题,需采用稳健标准误或加权最小二乘法(WLS)进行修正,确保回归结果的有效性。多重共线性检验通过计算方差膨胀因子(VIF),使用 Stata 的 “estat vif” 命令获取各变量的 VIF 值。一般认为 VIF 值大于 10 时存在严重多重共线性,需通过剔除变量、主成分分析等方法进行处理,避免模型参数估计偏差,提高模型的稳定性与解释力。

四、研究结果


4.1 描述性统计

  描述性分析通过平均值或中位数描述数据的整体情况。从上表可以看出:Adjusted savings: natural resources depletion (% of GNI)共1项的最大值超过平均值3个标准差【说明数据波动较大,相对平均值,使用中位数描述整体水平更适合】,总结可知,Adjusted savings: natural resources depletion (% of GNI), Net migration共2项数据的最值(最小/最大值)超过平均值3个标准差【说明数据波动较大,相对平均值,使用中位数描述整体水平更适合】,

4.2 相关性分析

从上表可知,利用相关分析去研究Unemployment, total (% of total labor force) (modeled ILO estimate), Unmet need for contraception (% of married women ages 15-49)分别和Access to clean fuels and technologies for cooking (% of population), Access to electricity (% of population), Adjusted savings: natural resources depletion (% of GNI), Adjusted savings: net forest depletion (% of GNI), Agricultural land (% of land area), Agriculture, forestry, and fishing, value added (% of GDP), Annual freshwater withdrawals, total (% of internal resources), Cause of death, by communicable diseases and maternal, prenatal and nutrition conditions (% of total), CO2 emissions (metric tons per capita), Electricity production from coal sources (% of total), Energy imports, net (% of energy use), Energy intensity level of primary energy (MJ/$2017 PPP GDP), Energy use (kg of oil equivalent per capita), Fertility rate, total (births per woman), Forest area (% of land area), Fossil fuel energy consumption (% of total), GDP growth (annual %), Government expenditure on education, total (% of government expenditure), Hospital beds (per 1,000 people), Individuals using the Internet (% of population), Labor force participation rate, total (% of total population ages 15-64) (modeled ILO estimate), Life expectancy at birth, total (years), Literacy rate, adult total (% of people ages 15 and above), Mammal species, threatened, Methane emissions (metric tons of CO2 equivalent per capita), Mortality rate, under-5 (per 1,000 live births), Net migration, Nitrous oxide emissions (metric tons of CO2 equivalent per capita), People using safely managed sanitation services (% of population), PM2.5 air pollution, mean annual exposure (micrograms per cubic meter), Population ages 65 and above (% of total population), Population density (people per sq. km of land area), Prevalence of overweight (% of adults), Prevalence of undernourishment (% of population), Proportion of seats held by women in national parliaments (%), Ratio of female to male labor force participation rate (%) (modeled ILO estimate), Renewable electricity output (% of total electricity output), Renewable energy con

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Olivia-gogogo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值