- 博客(198)
- 资源 (2)
- 收藏
- 关注
原创 基于FashionMnist数据集的自监督学习(生成式自监督学习VAE算法)
本文研究了变分自编码器(VAE)在图像生成和分类任务中的应用。VAE通过将输入图像编码为潜在空间的概率分布(均值与方差),并使用重参数化技巧采样生成隐变量,实现了优于传统自动编码器的生成能力和特征表达能力。实验采用FashionMNIST数据集,构建了包含残差块的深度VAE模型,潜在空间维度设为512。训练过程中采用了KL散度权重逐步增加的策略(Annealed VAE)和自适应学习率调度。测试结果表明,VAE不仅能有效重建图像,其提取的512维隐变量在分类任务中也取得了较高准确率,验证了VAE在无监督特征
2025-06-01 18:20:21
876
原创 深度学习中常见的超参数对系统的影响
摘要:深度学习模型训练涉及多个关键超参数,学习率控制参数更新步伐,需平衡速度与稳定性;批次大小影响计算效率与泛化能力;迭代次数需适中避免欠/过拟合;优化器类型决定参数更新方式;正则化防止过拟合;激活函数引入非线性;学习率调度动态调整训练效率。这些参数需协同优化,根据任务特点选择合适组合,才能实现模型高效收敛与良好泛化。
2025-06-01 14:28:33
704
原创 基于FashionMnist数据集的自监督学习(生成式自监督学习AE算法)
生成式自监督学习(Generative Self-Supervised Learning)是机器学习中一种利用数据自身结构进行无监督学习的方法,其核心思想是通过生成模型构建自监督信号,让模型从无标注数据中自动学习数据的潜在规律和特征表示。这种方法无需人工标注标签,而是利用数据本身的内在关联(如上下文关系、时序依赖、结构特征等)生成训练目标,从而提升模型对数据的理解和生成能力。
2025-05-31 22:03:19
1144
原创 基于FashionMnist数据集的自监督学习(对比式自监督学习SimCLR算法)
本文介绍了对比式自监督学习(SSL)技术及其常见算法实现。对比式SSL通过构造"正样本对"(同一数据的不同增强视图)和"负样本对"来迫使模型学习数据本质特征,无需人工标注即可利用海量无标注数据。文章详细分析了7种典型算法:SimCLR、MoCo、BYOL、SimSiam、CLIP、DINO和SwAV,比较了它们在负样本需求、创新点和计算效率等方面的差异。通过FashionMNIST数据集上的实验,展示了从数据增强、编码器设计到对比损失计算的完整实现流程,包括卷积编码器
2025-05-27 11:38:11
1055
原创 基于FashionMnist数据集的自监督学习(判别式自监督学习)
摘要: 本文系统介绍了自监督学习及其在Fashion-MNIST数据集上的应用。自监督学习分为生成式、对比式和判别式三类,本文采用判别式方法,通过图像旋转预测任务构建伪标签。实验设计包括:1) 数据处理,将原始图像随机旋转0°、90°、180°、270°生成伪标签;2) 构建三层CNN模型进行旋转角度预测;3) 迁移学习阶段冻结卷积层,仅训练新分类头完成10类服饰分类。最终模型在Fashion-MNIST上达到91%准确率,验证了自监督学习利用数据内在结构构建监督信号的有效性。该方法避免了人工标注依赖,为计
2025-05-26 10:52:21
1174
原创 基于Resnet-34的树叶分类(李沐深度学习基础竞赛)
本文介绍了一个基于ResNet-34的树叶分类模型训练与测试流程。数据集来自Kaggle竞赛,包含18000张训练集和8000张测试集图片,涵盖176种树叶类别。模型采用ResNet-34架构,加载ImageNet预训练权重,并通过修改全连接层适配多分类任务。训练过程中,使用交叉熵损失函数和Adam优化器,结合学习率动态调整策略,训练30个epoch后,模型在验证集上的准确率达到92.9%。测试阶段,通过自定义数据集类加载测试数据,并应用与验证集一致的预处理流程,最终将预测结果保存为CSV文件。总结指出,R
2025-05-21 17:40:48
1054
原创 基于CNN的猫狗识别(自定义Resnet-18模型)
本文介绍了使用ResNet-18模型进行猫狗分类的完整流程。数据集来自Kaggle,包含8000张训练图片和2000张测试图片。ResNet通过残差块解决了深度网络中的梯度消失和退化问题,支持构建上百层的网络。模型训练采用迁移学习,使用预训练的ResNet-18模型,并修改最后一层全连接层以适应二分类任务。训练过程中使用了数据增强、Adam优化器和学习率调度器。经过15个epoch的训练,模型在验证集上达到了96%以上的准确率。测试部分展示了单张图片预测、测试集评估和错误分类样本的可视化。相比简单的CNN模
2025-05-20 15:18:59
1002
原创 基于CNN的猫狗识别(自定义CNN模型)
本文介绍了一个基于PyTorch的猫狗分类模型的训练与测试过程。数据集来自Kaggle,包含4000张猫和4000张狗的图片用于训练,1000+猫和1000+狗的图片用于测试。模型采用了卷积神经网络(CNN)结构,包含四层卷积和两层全连接层,使用Adam优化器和学习率调度器进行训练。训练过程中,模型通过验证集实时评估性能,并保存最佳模型。测试结果显示,模型在训练集和测试集上的准确率一致,未出现过拟合现象,但整体准确率仍有提升空间。未来计划采用更复杂的模型如ResNet或EfficientNet以提高性能。
2025-05-18 21:43:56
1009
1
原创 基于MNIST数据集的手写数字识别(CNN)
本文详细介绍了使用卷积神经网络(CNN)进行MNIST手写数字识别的实验过程。首先,文章介绍了MNIST数据集的构成和特点,随后详细描述了CNN模型的架构,包括卷积层、池化层、Dropout层和全连接层的设计。接着,文章阐述了数据预处理、模型训练和保存的步骤,并提供了完整的代码实现。在模型测试部分,文章展示了如何加载预训练模型并对自定义图像进行预测,测试结果表明模型具有较高的准确率和置信度。最后,文章总结了CNN在图像分类中的优势,包括参数共享、局部连接和特征提取能力,相比全连接网络具有更高的效率和更好的泛
2025-05-16 14:37:51
1437
原创 基于MNIST数据集的手写数字识别(简单全连接网络)
本文详细介绍了使用简单全连接神经网络(FCN)处理MNIST手写数字数据集的完整流程。首先,文章对MNIST数据集进行了简要介绍,并解释了简单神经网络的结构及其工作原理。接着,文章逐步展示了如何定义神经网络的层结构、进行数据预处理、加载数据、初始化模型、训练模型以及保存训练好的模型参数。在代码解析部分,文章详细说明了如何定义模型、加载模型、进行数据预处理、预测结果并显示预测效果。最后,文章通过测试自定义图片验证了模型的预测能力,并总结了简单全连接神经网络与卷积神经网络(CNN)的差异。整体而言,本文为深度学
2025-05-13 21:39:51
878
2
原创 PID控制算法
PID控制算法(比例-积分-微分控制)是一种广泛应用于工业控制系统的反馈控制机制。它通过比例(P)、积分(I)和微分(D)三个环节的组合来调节系统输出,使其尽可能接近设定值。
2025-03-06 16:38:42
1265
原创 PCB的10条布线原则
目录电气连接原则:连线精简:避免直角:差分走线:蛇形线等长:圆滑走线:数字模拟分开:3W原则:20H原则:安全载流原则:铜箔承载电流:过孔承载电流:
2024-03-26 18:56:13
1010
原创 MP2315GJ-Z稳压芯片
MP2315 是一款内置内部功率 MOSFET 的高频同步整流降压开关模式变换器。可在宽输入范围内实现 3A 的连续输出电流,并具有出色的负载和线路调节能力。MP2315 采用同步工作模式,可在输出电流负载范围内实现更高的效率。电流模式操作提供快速瞬态响应,并简化环路稳定。全面保护功能包括OCP 和热关断。MP2315 最大限度地减少了现有标准外部元器件的使用,采用节省空间的 8 引脚 TSOT23 封装。
2024-03-24 11:25:25
3437
原创 AD20中关于“Net(s) Not Found in Differential Pair”的解决方法
AD20中关于“Net(s) Not Found in Differential Pair”的解决方法
2024-03-08 16:31:00
2195
1
原创 AD20中关于“failed to add class member”的解决方法
AD20中关于“failed to add class member”的解决方法
2024-03-08 16:20:49
9173
2
原创 HPM6750开发笔记《HPM6750最小系统硬件原理图》
HPM6700/6400 系列 MCU 是来自上海先楫半导体科技有限公司的高性能实时 RISC-V 微控制器,为工业自动化 及边缘计算应用提供了极大的算力、高效的控制能力及丰富的多媒体功能。RISC-V 内核支持双精度浮点运算及强大的 DSP 扩 展,HPM6750 旗舰型号双核主频高达 816 MHz。以HPM6750evk为例,其芯片封装为14×14 289BGA P0.8。
2024-01-07 15:32:34
1351
原创 HPM6750开发笔记《DMA接收和发送数据UART例程深度解析》
DMA(Direct Memory Access)是一种计算机系统中的数据传输技术,它允许数据在不经过中央处理器(CPU)的直接控制下在内存和外设之间传输。UART(Universal Asynchronous Receiver/Transmitter)是一种串行通信协议,用于在设备之间传输数据。在DMA接收和发送数据的情况下,DMA可以用于管理UART通信中的数据传输。当UART接收到数据时,通常会触发中断来通知CPU。
2024-01-06 14:52:25
2252
原创 DMX512输出协议详解
DMX512是一种用于舞台灯光控制的数字传输协议。它是由美国舞台灯光协会(USITT)于1990年发布的工业标准,全称为USITT DMX512(1990)。DMX512协议定义了灯光控制器与灯具设备之间进行数据传输的电气特性、数据协议和数据格式等方面的内容。通过DMX512协议,可以实现对舞台灯光设备的精确控制,包括调整亮度、颜色、运动等。DMX512协议常用于舞台演出、演唱会、剧院等场合,以及其他需要对灯光进行精确控制的应用领域。DMX512是一种用于控制舞台灯光和特效设备的通信协议。
2024-01-06 11:29:04
9978
2
原创 深入理解SPI通讯协议
SPI(Serial Peripheral Interface)是一种常用的串行通信协议,用于在微控制器和外部设备之间进行数据传输。SPI通信使用主从架构,其中一个设备充当主设备,其他设备充当从设备。SPI通信使用时钟极性(CPOL)和时钟相位(CPHA)来控制通信模式。
2024-01-03 16:29:36
1985
原创 串口通信要点解析
UART通用异步收发传输器 (Universal Asynchronous ReceiverTransmitter) 是一种串行异步收发协议 (异步是指通信双方使用各自的时钟控制数据的发送和接收过程),目前在各种通信领域广泛应用。UART通讯协议中指明在数据通信过程中,将数据一位一位(0'或1’) 进行传输,状态位高电平代表1低电平代表0。当两个设备使用UART通讯时,双方要事先约定好波特率、数据位、奇偶校验位以及停止位后才能进行数据交互。
2024-01-03 15:32:51
593
原创 HPM6750开发笔记《hpm_pinmux_tool的使用》
HPM6750开发笔记《hpm_pinmux_tool的使用》快速配置引脚功能
2023-12-28 10:15:10
1052
2
VHDL语言实现了一个带有小数位的正计时功能的计时器
2023-01-01
2022广东省大学生电子设计竞赛-省一等奖作品报告 全自动多功能核酸检测系统(智慧医疗)
2022-11-20
智能小车驱动基础代码(双轮PWM调控,三个串口通信)下载即用,可移植性强
2022-03-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人