题目描述
太空帝国要通过建造隧道来联通它的 N个星球。
每个星球用三维坐标 (xi,yi,zi)来表示,而在两个星球 A,B之间建造隧道的价格为 min{∣xA−xB∣,∣yA−yB∣,∣zA−zB∣}。
现要建造 N−1条隧道使得所有的星球都能直接或间接相连。求完成该任务所需的最小总价。
输入
第一行,一个整数 N。
接下来的 N行,每行三个整数 xi,yi,zi,表示第 i个星球的坐标。
数据保证不存在两个具有相同坐标的星球。
输出
输出所需的最小总价。
样例输入
2
1 5 10
7 8 2
样例输出
3
【数据规模与约定】
对 100%的数据,1≤N≤10^5,−10^9≤xi,yi,zi≤10^9。
#include<bits/stdc++.h>
using namespace std;
struct node {
int dis;
int a,b;
}q[300005];;
struct node1 {
int d,num;
};
int n,totq=0,h=0;
int v[100005];
node1 x[4][100005];
long long ans=0;
bool cmp(node x,node y){
return x.dis<y.dis;
}
bool cmp1(node1 x,node1 y){
return x.d<y.d;
}
int dfs(int x){
if(v[x]==x) return x;
v[x]=dfs(v[x]);
return v[x];
}
int main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>x[1][i].d>>x[2][i].d>>x[3][i].d;
x[1][i].num=x[2][i].num=x[3][i].num=i;
v[i]=i;
}
sort(x[1]+1,x[1]+n+1,cmp1);
sort(x[2]+1,x[2]+n+1,cmp1);
sort(x[3]+1,x[3]+n+1,cmp1);
for(int i=1;i<=n-1;i++){
for(int j=1;j<=3;j++){
q[++totq].a=x[j][i].num,q[totq].b=x[j][i+1].num,q[totq].dis=abs(x[j][i+1].d-x[j][i].d);
}
}
sort(q+1,q+n*3-2,cmp);
for(int vv=0;vv<=totq;vv++){
if(h>=n-1) break;
int x=dfs(q[vv].a),y=dfs(q[vv].b);
//cout<<x<<' '<<y<<'\n';
if(x!=y){
h++;
ans=ans+q[vv].dis;
v[x]=v[y];
}
}
cout<<ans;
return 0;
}