hnust 1814: 算法10-4,10-5:希尔排序

hnust 1814: 算法10-4,10-5:希尔排序

题目描述
希尔排序又称“缩小增量排序”,它是一种属于插入排序类的排序方法,但是在时间效率方面较普通的插入排序方法有较大的改进。
希尔排序的基本思想是:先将整个待排序的序列分割成为若干子序列,并分别进行直接插入排序,当整个序列中的记录基本有序时,再对全体记录进行一次直接插入排序。
希尔排序的算法可以描述如下:
在这里插入图片描述

在本题中,读入一串整数,将其使用以上描述的希尔排序的方法从小到大排序,并输出。

输入
输入的第一行包含1个正整数n,表示共有n个整数需要参与排序。其中n不超过1000。
第二行包含n个用空格隔开的正整数,表示n个需要排序的整数。
输出
只有1行,包含n个整数,表示从小到大排序完毕的所有整数。
请在每个整数后输出一个空格,并请注意行尾输出换行。
样例输入 Copy
10
2 8 4 6 1 10 7 3 5 9
样例输出 Copy
1 2 3 4 5 6 7 8 9 10
提示
在本题中,需要按照题目描述中的算法完成希尔排序的算法。
希尔排序的时间复杂度分析是一个复杂的问题,因为其时间与所取的“增量序列”相关。目前为止尚未有人求得一种最好的增量序列。增量序列可以有多种不同的取法,但是需要注意的是,在选取增量序列时务必使序列中的值没有除1以外的公因子,且最后一个增量值必须等于1。
与直接插入排序相比,通过选择合适的增量序列,希尔排序算法能够使排序的效率得到部分的提高,但是由于其形式的复杂性和增量序列选择并没有定论,所以在实际应用中希尔排序是非常少见的。

解题过程

这段代码实现了希尔排序(Shell sort)算法,希尔排序是一种基于插入排序的高效排序算法,由 Donald Shell 于 1959 年提出。
以下是对代码的详细解析:

  1. 函数定义

    • shellsort():函数名,表示希尔排序算法的实现,不接收任何参数,但似乎在函数外部有一个全局数组 q 和一个全局变量 n,分别代表要排序的数组和数组的长度。
  2. 希尔排序的核心思想

    • 希尔排序通过引入增量的概念来改进插入排序。增量序列的选择对算法性能有很大影响。
  3. 增量序列

    • for (d = n / 2; d > 0; d /= 2):这个循环确定增量序列。初始增量是数组长度的一半,然后每次循环将增量除以 2,直到增量为 1。
  4. 增量排序

    • 在每个增量 d 上,希尔排序执行类似于插入排序的操作,但只在每隔 d 个元素上进行。
  5. 内层循环

    • for (i = d; i < n; i++):这个循环控制增量排序中的位置。
  6. 元素交换

    • temp = q[i];:将当前位置 i 的元素暂存到 temp
    • for (j = i - d; j >= 0 && q[j] > temp; j -= d):使用 j 从当前位置向前以增量 d 为步长进行遍历,如果 q[j] 大于 temp,则将 q[j] 向后移动 d 个位置。
  7. 插入元素

    • q[j+d] = temp;:将暂存的元素 temp 插入到正确的位置。
  8. 算法结束

    • 当增量减小到 1 时,算法退化为普通的插入排序,但由于之前的增量排序,数组已经部分有序,因此最后一步的插入排序会非常快。
  9. 算法性能

    • 希尔排序的时间复杂度依赖于增量序列的选择,最好的情况可以达到 O(n log n),最坏的情况是 O(n^2)。
  10. 稳定性

    • 希尔排序是不稳定的排序算法,因为它可能会在排序过程中改变相同元素的相对顺序。

希尔排序是一种有效的排序算法,特别适用于大量数据的排序。它通过增量序列的设计减少了比较和交换的次数,提高了排序效率。然而,增量序列的选择对算法性能有很大影响,因此在实际应用中需要仔细选择增量序列。


AC代码

#include <iostream>
using namespace std;
const int N=100010;
int q[N],n;
 
void shellsort()
{
        int i, j, d, temp;
 
        for (d = n / 2; d > 0; d /= 2)
        {
                for (i = d; i < n; i++)
                {
                        temp = q[i];
                        for (j = i - d; j >= 0 && q[j] > temp; j -= d)
                        {
                                q[j+d] = q[j];
                        }
                        q[j+d] = temp;
                }
        }
}
int main()
{
    cin>>n;
    for(int i=0;i<n;i++)
    {
        cin>>q[i];
    }
    shellsort();
    for(int i=0;i<n;i++)
    {
        cout<<q[i]<<' ';
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值