hnust 1814: 算法10-4,10-5:希尔排序
题目描述
希尔排序又称“缩小增量排序”,它是一种属于插入排序类的排序方法,但是在时间效率方面较普通的插入排序方法有较大的改进。
希尔排序的基本思想是:先将整个待排序的序列分割成为若干子序列,并分别进行直接插入排序,当整个序列中的记录基本有序时,再对全体记录进行一次直接插入排序。
希尔排序的算法可以描述如下:
在本题中,读入一串整数,将其使用以上描述的希尔排序的方法从小到大排序,并输出。
输入
输入的第一行包含1个正整数n,表示共有n个整数需要参与排序。其中n不超过1000。
第二行包含n个用空格隔开的正整数,表示n个需要排序的整数。
输出
只有1行,包含n个整数,表示从小到大排序完毕的所有整数。
请在每个整数后输出一个空格,并请注意行尾输出换行。
样例输入 Copy
10
2 8 4 6 1 10 7 3 5 9
样例输出 Copy
1 2 3 4 5 6 7 8 9 10
提示
在本题中,需要按照题目描述中的算法完成希尔排序的算法。
希尔排序的时间复杂度分析是一个复杂的问题,因为其时间与所取的“增量序列”相关。目前为止尚未有人求得一种最好的增量序列。增量序列可以有多种不同的取法,但是需要注意的是,在选取增量序列时务必使序列中的值没有除1以外的公因子,且最后一个增量值必须等于1。
与直接插入排序相比,通过选择合适的增量序列,希尔排序算法能够使排序的效率得到部分的提高,但是由于其形式的复杂性和增量序列选择并没有定论,所以在实际应用中希尔排序是非常少见的。
解题过程
这段代码实现了希尔排序(Shell sort)算法,希尔排序是一种基于插入排序的高效排序算法,由 Donald Shell 于 1959 年提出。
以下是对代码的详细解析:
-
函数定义:
shellsort()
:函数名,表示希尔排序算法的实现,不接收任何参数,但似乎在函数外部有一个全局数组q
和一个全局变量n
,分别代表要排序的数组和数组的长度。
-
希尔排序的核心思想:
- 希尔排序通过引入增量的概念来改进插入排序。增量序列的选择对算法性能有很大影响。
-
增量序列:
for (d = n / 2; d > 0; d /= 2)
:这个循环确定增量序列。初始增量是数组长度的一半,然后每次循环将增量除以 2,直到增量为 1。
-
增量排序:
- 在每个增量
d
上,希尔排序执行类似于插入排序的操作,但只在每隔d
个元素上进行。
- 在每个增量
-
内层循环:
for (i = d; i < n; i++)
:这个循环控制增量排序中的位置。
-
元素交换:
temp = q[i];
:将当前位置i
的元素暂存到temp
。for (j = i - d; j >= 0 && q[j] > temp; j -= d)
:使用j
从当前位置向前以增量d
为步长进行遍历,如果q[j]
大于temp
,则将q[j]
向后移动d
个位置。
-
插入元素:
q[j+d] = temp;
:将暂存的元素temp
插入到正确的位置。
-
算法结束:
- 当增量减小到 1 时,算法退化为普通的插入排序,但由于之前的增量排序,数组已经部分有序,因此最后一步的插入排序会非常快。
-
算法性能:
- 希尔排序的时间复杂度依赖于增量序列的选择,最好的情况可以达到 O(n log n),最坏的情况是 O(n^2)。
-
稳定性:
- 希尔排序是不稳定的排序算法,因为它可能会在排序过程中改变相同元素的相对顺序。
希尔排序是一种有效的排序算法,特别适用于大量数据的排序。它通过增量序列的设计减少了比较和交换的次数,提高了排序效率。然而,增量序列的选择对算法性能有很大影响,因此在实际应用中需要仔细选择增量序列。
AC代码
#include <iostream>
using namespace std;
const int N=100010;
int q[N],n;
void shellsort()
{
int i, j, d, temp;
for (d = n / 2; d > 0; d /= 2)
{
for (i = d; i < n; i++)
{
temp = q[i];
for (j = i - d; j >= 0 && q[j] > temp; j -= d)
{
q[j+d] = q[j];
}
q[j+d] = temp;
}
}
}
int main()
{
cin>>n;
for(int i=0;i<n;i++)
{
cin>>q[i];
}
shellsort();
for(int i=0;i<n;i++)
{
cout<<q[i]<<' ';
}
return 0;
}