李永乐知识点
矩阵的秩的问题
秩为1的矩阵,其特征值有一个是它的迹,其他的都是0
αβ^T 的秩,有一个是它的内积,其他的都是0
含参矩阵求参数问题
三阶矩阵中,已知含参矩阵 A ,有二重特征值,求参数问题
特征值有二重根→λ₁=λ₂,有两个无关的特征向量→r(λE-A)=1→可以算出 A 中的参数(若参数有多个值,需要分类讨论)
带参数的矩阵与另一矩阵相似
最好用的公式是两矩阵的迹相等
行列式相等
有 |(λ_B)E-A|=0,λ_B 为 B 的特征值(有可能有以外,用多个特征值代入)
相似的传递性
大题见到相似,大概率要求特征值与特征向量
特征值与特征向量的求法:
Aξ=λξ → A(α₁,α₂,α₃) = λ(α₁,α₂,α₃)
也就是观察给出的表达式能否做左乘 A ,得出 Aξ=λξ 这道公式,进而求出特征值与特征向量
第一种类型的题目:


注意:可能需要根据条件转一下,才能形成(P₁^-1) A P₁ = B这个条件
如:AP₁=P₁B,这里的 P₁ 可能是向量。题目给出向量方程,通过左右两边“左乘 A ”,得左边的 AP,而右边进行矩阵-向量乘积变化得出 PB。
第二种类型的题目:


需要注意的一点:

李林108
极限计算问题



复合函数、隐函数的偏导数、全微分的计算
隐函数求二阶导时,只需将一阶偏导继续求偏导即可
注意二阶偏导中的常量、自变量、因变量
求二阶导的步骤
先把一阶导求出来
把二阶导的框架搭起来,里面的二次求导先别求,分步逐个求出
最后代入化简即可
多个抽象函数求导(对某一变量求导,如x6)
用克拉默法则
可以求方程组的解
可以求导数方程的解
用法,将对 x 求导的放一边

多元函数极值与最值
在一个封闭区域内求最值
用拉格朗日(边界)+无条件极值(内部)
看到 ∫∫ d□d□
要想起 高斯 啊
11月2日
关于特征值与特征向量的问题
(P^-1)AP=B
若 B 的关于特征值 λ 的特征向量为 ξ,则 A 的关于特征值 λ 的特征向量为 (P^-1)ξ
若 Aξ = 0 (或者说 ξ 为 Ax=0 的基础解系)
则有 Aξ = 0*ξ
继而有 A 的一个特征值为0,其对应的特征向量为 ξ 。
11月10日
无偏估计问题
□ 是 θ^n 的无偏估计 => E□ = θ^n
空间曲线求曲面积分问题:
旋转体,直接先二后一!!!(这个知识点考了很多次了!!!)
若题目中有给出 z≤1 ,这表明 z 有上限,但下限不定!即 z 的下限会受到方程的影响,上限为1。
三角函数大小比较
若 θ 在 (0,π/2) 内,则表明 f(x)=cosx 单调递减
11月13日
二元函数 f 二阶导连续,且 f 中带参数问题
可以尝试利用

看这个公式能否将参数求出。
11月17日
求高阶导问题

微分方程的问题
若 y₁=A(x)-B(x),y₂=A(x)+B(x) 是 y'+p(x)y=q(x)的两个解,有以下结论:
(y₂-y₁)/2 是y'+p(x)y=0 的解
(y₂+y₁)/2 是y'+p(x)y=q(x) 的解
标准正态分布问题

其中 Φ(x) 是单调递增函数。
分布函数的问题
若已知 F_X(x),而 T=(X₁,X₂,X₃)
F_T(t)=[F_X(t)]³
多元函数积分学的问题
看到球面 x²+y²+z²=1,注意可能会用到轮换对称性
值得注意的点:若所求区域为曲面方程的前侧(即求的并非给定区域),不能用方程代入(被积函数)或(普通/轮换)对称性解题!!!
11月24日(2017年真题)
求导问题问题
大意失荆州!若求 fⁿ(0)的值,除了之前说的方法之外,还可以先判断 f(x) 的奇偶性!若 fⁿ(x) 为奇函数,则 fⁿ(0)=0
极限问题
若 lim f(x)/x (x→0+) = 存在,则 f(0)=0
概率论问题
Z=离散+连续,要分类讨论 Z 的取值范围
Z = 连续+连续,用卷积公式,也要讨论 Z 的取值范围
几个小知识
①正态分布问题

②多重积分学问题

12月4日(2022年真题)
若向量组 A、B 等价,则 r(A)=r(B)=r(A|B)
多元函数积分学(二重积分),图中有图时,用参数式!
12月12日(李永乐小知识点)

合工大超越
第一套
关于曲面法向量问题
若曲面 ∑:F(x,y,z) 在 x₁ 处的法向量 n 指向下方,则
n=(F'x,F'y,-F'z)|x₁
关于级数敛散性问题

一般性结论:若级数中出现 a^n(a为参数)判敛散性,用比值判敛法(注:需属于正项级数)
关于三大分布问题

小知识点

第二套
判断两直线是否垂直、平行、异面?
①垂直:若两直线方向向量点乘为 0 :s1*s2 =0
则两直线垂直;否则不垂直
②平行:若两直线方向向量平行:s1//s2
则两直线平行;否则不平行
③异面:若两直线构成的方程组无解,则两直线异面
A 的每行元素之和均为0:

距离最远的两点间的距离:M-N
M=max{X1,X2,...,Xn},N=min{X1,X2,...,Xn}
若是在区间 [a,b] 上取 n 个点,有 X~U(a,b)
求平均距离:E(M-N)

概率论的一般性结论:P(B)+P(C)≥2P(BC)
定积分基本定理:

计算全微分的问题
要慢慢算
A为三阶正交矩阵,且|A|<0
有|A|=-1
注意:若 A 为正交矩阵,有A*(A^T)=E => |A|*|A^T|=1 =>|A|²=1 => |A|=±1
计算级数和和函数,注意是否有间断点!
若收敛域内包含 x=0 ,则要判断级数在 x=0 处是否值为 0!(即分类讨论)
第三套
求幂级数的和函数,给出了 a0,a1 的值,an 与 an+1 的关系式的解法
分别列出 a2,a3,a4 的表达式,找出规律
注意:遇加减乘除法时,建议保留原样,不算结果(易得规律)
关于二维联合概率密度,有 X、Y 服从正态分布的问题
若求 σ² 的最大似然估计,则根据

关于无穷小的问题
若看到 X 在分母且为多项式,即 1/(a+bx),注意有:

曲面积分问题:
见到 z=z(x);z=z(y) ,可用参数式: x=t;y=□;z=z(t)
再代入曲面积分即可(注意要画图!)
若有某线绕某轴旋转得曲面,通常都是要补面构成空间曲面体!
曲线积分
若曲线为圆,用 x=rcosθ,y=rsinθ
若用到极限(如 R→∞等),可能要用到夹逼!
注意离散型随机变量的图
实对称矩阵求特征值:
将第二行(或某一行)遮掉,看一三行(或其他两行)哪个元素加加减减可得零,以此为突破口。
第一套
关于曲面法向量问题
若曲面 ∑:F(x,y,z) 在 x₁ 处的法向量 n 指向下方,则
n=(F'x,F'y,-F'z)|x₁
关于级数敛散性问题

一般性结论:若级数中出现 a^n(a为参数)判敛散性,用比值判敛法(注:需属于正项级数)
关于三大分布问题

小知识点

第二套
判断两直线是否垂直、平行、异面?
①垂直:若两直线方向向量点乘为 0 :s1*s2 =0
则两直线垂直;否则不垂直
②平行:若两直线方向向量平行:s1//s2
则两直线平行;否则不平行
③异面:若两直线构成的方程组无解,则两直线异面
A 的每行元素之和均为0:

距离最远的两点间的距离:M-N
M=max{X1,X2,...,Xn},N=min{X1,X2,...,Xn}
若是在区间 [a,b] 上取 n 个点,有 X~U(a,b)
求平均距离:E(M-N)

概率论的一般性结论:P(B)+P(C)≥2P(BC)
定积分基本定理:

计算全微分的问题
要慢慢算
A为三阶正交矩阵,且|A|<0
有|A|=-1
注意:若 A 为正交矩阵,有A*(A^T)=E => |A|*|A^T|=1 =>|A|²=1 => |A|=±1
计算级数和和函数,注意是否有间断点!
若收敛域内包含 x=0 ,则要判断级数在 x=0 处是否值为 0!(即分类讨论)
第三套
求幂级数的和函数,给出了 a0,a1 的值,an 与 an+1 的关系式的解法
分别列出 a2,a3,a4 的表达式,找出规律
注意:遇加减乘除法时,建议保留原样,不算结果(易得规律)
关于二维联合概率密度,有 X、Y 服从正态分布的问题
若求 σ² 的最大似然估计,则根据

关于无穷小的问题
若看到 X 在分母且为多项式,即 1/(a+bx),注意有:

曲面积分问题:
见到 z=z(x);z=z(y) ,可用参数式: x=t;y=□;z=z(t)
再代入曲面积分即可(注意要画图!)
若有某线绕某轴旋转得曲面,通常都是要补面构成空间曲面体!
曲线积分
若曲线为圆,用 x=rcosθ,y=rsinθ
若用到极限(如 R→∞等),可能要用到夹逼!
注意离散型随机变量的图
实对称矩阵求特征值:
将第二行(或某一行)遮掉,看一三行(或其他两行)哪个元素加加减减可得零,以此为突破口。
李林四套卷

