- 博客(401)
- 收藏
- 关注
原创 我还是没有理解两张图片是如何同时做变换的
(4) RandomHSV / RandomFlip:颜色 LUT、np.fliplr/ud 都对两张图一起做。(5) Albumentations:默认只放“非几何”操作(Blur、CLAHE…为什么“img”和“img2”能始终一起被拉伸、拼接、翻转、颜色抖动?的循环,就能看到两张图在流水线中一起被读取、一起被写回,整个过程始终保持配对一致。下面按执行顺序把关键细节展开说明,并给出源码行号,方便你自行跟踪。(2) Mosaic:一次拼 4 or 9 张时,同时拼出。各自独立做色彩增强,不需要对齐几何。
2025-06-12 15:12:22
1
原创 PAN/FPN
输入 K/V (高分辨率) shape: torch.Size([1, 32, 32, 32])输入 K/V (低分辨率) shape: torch.Size([1, 64, 16, 16])输入 Q (低分辨率) shape: torch.Size([1, 64, 16, 16])输入 Q (高分辨率) shape: torch.Size([1, 32, 32, 32])输出特征图 shape: torch.Size([1, 32, 32, 32])参数量: 25,024。参数量: 24,992。
2025-06-09 13:53:33
95
原创 看看不同主干的参数量是多少
22: 25623: 25624: 512MSAF_small22: 12823: 12824: 256改变原始主干Concat22: 12823: 25624: 384MSAF_small22: 6423: 12824: 192
2025-06-07 10:49:02
19
原创 YOLOV11网络图和数据增强
在指定范围内随机旋转图像。旋转 degrees 超参数定义了旋转角度,最终的调整在以下两个参数之间随机选择 -degrees 和 degrees.例如 degrees=10.0的范围内随机选择旋转-10.0 至 10.0.在指定范围内以随机因子调整图像大小。图像大小 scale 超参数定义了缩放因子,最终的调整幅度在 1-scale 和 1+scale.例如 scale=0.5的范围内随机选择缩放0.5 至 1.5.-0.5 至 0.5 在 x 轴上,在相同范围内选择另一个独立随机值在 y 轴上。
2025-05-23 12:46:04
82
原创 神经网络结构搜索 (1/3): 基本概念和随机搜索 Neural Architecture Search: Basics & Random Search
本文通过图示展示了搜索空间及其输出的概念,并介绍了随机搜索的方法。搜索空间是指所有可能解的集合,其输出则是搜索过程中得到的具体结果。随机搜索是一种在搜索空间中随机选择解的方法,通过多次尝试以找到最优解。图示直观地展示了搜索空间的结构、输出结果以及随机搜索的过程,帮助读者更好地理解这些概念及其应用。
2025-05-14 11:25:44
32
原创 STL 核心模块
容器小题练习关键词vector筛选+排序线性数据set去重+排序唯一集合统计频率快速查找stack括号匹配后进先出下面按四大类 + 每类具体容器给出简单易懂的例子和对应代码,帮助你快速掌握它们的用法。
2025-04-23 15:44:15
579
原创 栈模拟后序遍历(左 → 右 → 中)的方式来计算树的最大深度
✅ 用栈模拟后序遍历(左 → 右 → 中)的方式来计算树的最大深度。我们将,一步一步分析stackdepthresult的变化,非常适合调试 & 理解!
2025-04-22 17:17:11
214
原创 `std::cout << xxx`
定义了一个Personname和age。是 C++ 的字符串类。概念含义std::cout是类型的一个全局对象,代表控制台输出是对输出流对象的引用,方便链式输出operator<<你可以重载它,告诉编译器你的对象该怎么打印返回引用。
2025-04-22 16:06:35
261
原创 宏函数 和 C++ 内联函数
特性宏函数(#define内联函数(inline替换方式预处理阶段文本替换编译阶段函数调用/展开类型安全❌ 无✅ 有类型检查副作用控制❌ 可能多次求值✅ 每个参数只求值一次可调试性❌ 调试困难✅ 可设置断点查看调用栈模板支持❌ 无✅ 支持泛型(如max<T>推荐场景非常短、极简替换绝大多数普通函数操作。
2025-04-22 15:11:27
355
原创 IoU 配对计算示例
已为示例中的 2 个 GT 和 3 个预测框生成了对应的混淆矩阵(含 background 行/列)。与任何 GT 都没配上 → 稍后被计入。真值框全部配上 → 没有。
2025-04-19 14:38:20
46
原创 `pred_by_img.setdefault(img, [ ]).append({...})`
用“按图索引”所有预测框,同时把类别编号和坐标格式预处理好这样在主循环里对每张图做 IoU 匹配时既快又少出错。
2025-04-19 14:10:08
314
原创 目标检测中的混淆矩阵
匹配标准:需要通过IOU判断预测框是否与真实框匹配。正负例定义匹配且分类对 → TP匹配但分类错 → FP(分类错误)没有匹配上任何预测框的真实框 → FN(漏检)没有对应真实框的预测框 → FP(背景误检)太好了,我们来举一个非常简单的例子,只有 2 张图,3 个类别(cat、dog、cow),你马上就能看懂目标检测中的混淆矩阵怎么来的,特别是background行和列的作用。
2025-04-18 15:38:29
179
原创 C vs C++ 中 struct 的对比
特性C structC++ struct功能范围仅变量变量 + 构造函数 + 方法 + 继承用途数据结构类功能完整,只是语法习惯不同和 class 的差别N/A只有默认权限不同(struct: public,class: private)C 是手动“模拟”类的行为,C++ 是语言级支持类的机制如果你用 C 写模块化代码,常常会这样“结构体 + 函数 + 前缀命名”,来模拟类的封装。你问得非常好,这个问题属于C语言底层知识点,经常在面试 & 源码分析中出现。
2025-04-17 15:23:49
386
原创 typedef 和 #define 起别名的区别
unsigned# define uint unsigned int // 宏定义 typedef unsigned int uint_t;// 类型定义int// 宏定义// 类型定义// 被替换为 unsigned int a = 10;// 真正的类型:unsigned int功能类似,但宏是纯文本替换,编译器不知道uint是类型。// 定义 uint_t 为 unsigned int 的别名// 使用 uint_t 定义变量 b// 直接使用 unsigned int 定义变量 c。
2025-04-17 15:21:56
631
原创 NMS YOLO
筛选出置信度最大类别大于 conf_thres 的框”如果你用的是,这一步只是初筛,后面还会处理多个类别;如果是,这一步的结果基本决定是否保留某个框。如你想看开关对这个过程的区别,也可以深入分析一波~
2025-04-14 21:10:23
64
原创 ACM 模式和核心代码模式
模式输入输出由谁处理代码结构通常用途ACM 模式你自己处理完整的 main 函数比赛/算法题核心代码模式平台处理只写函数或类逻辑部分面试/刷题平台(如 LeetCode)项目ACM 模式核心代码模式是否写 main✅ 是❌ 否输入输出自己用cin/cout平台自动处理写哪部分写全部代码只写核心函数(class/function)用途算法比赛、蓝桥杯等LeetCode、牛客网面试题、PAT 题目等。
2025-04-08 08:31:00
360
原创 YOLOV8 训练姿态检测模型
如果没有启用恢复训练(resume=False):使用 self.trainer.get_model() 手动初始化模型。加载细节,这时我们就获得了 mode 模型的权重值,以及模型文件件保存的其他内容 ckpt。调用父类方法继续初始化,在父类方法中加载创建模型或者是加载模型。准备训练前的事情,比如说优化器,dataloader 等等。构造PoseModel 这个类,继续调用父类的构造方法。创建一个新的模型,然后将权重加载进去。父类里面前向传播一次计算stride。
2025-04-01 19:17:58
296
原创 YOLO历代发展 图像增强方式 架构
tbox返回的是真实标记 相对于用来预测的grid cell 的偏移量 , 以及返回的是真实标记的长宽。80+64 = 80+16*4 4是指到每条边的距离。indices说明这个标记的类别是哪一个类别的。anch 是对应预测用的边缘框的类型。tcls 返回的是匹配后的类别。
2025-03-27 14:48:01
169
C++版本五子棋人机对战
2024-12-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人