注:本代码在jupyter notebook上运行
封面图片来源
Fashion-MNIST是一个广泛使用的图像数据集,主要用于机器学习算法的基准测试,特别是图像分类和识别任务。Fashion-MNIST由德国的时尚科技公司Zalando旗下的研究部门提供。作为MNIST手写数字集的一个直接替代品,旨在提供更具挑战性且更现代的机器学习基准测试数据集。数据集的图像结构简单,但分类难度相比MNIST有所提升,要求模型具备更强的特征提取和模式识别能力。
数据集总共包含70,000张灰度图像,分为60,000张训练图像和10,000张测试图像。其中每张图像都是28x28像素的灰度图像。涵盖了10种不同的衣物类型,包括T恤、裤子、套衫、裙子、外套、凉鞋、汗衫、运动鞋、包和踝靴。
%matplotlib inline
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
# from d2l import torch as d2l
# d2l.use_svg_display()
Fashion-MNIST数据集下载
# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0~1之间
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
root="data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
root="data", train=False, transform=trans, download=True)
Fashion-MNIST由10个类别的图像组成, 每个类别由训练数据集(train dataset)中的6000张图像和测试数据集(test dataset)中的1000张图像组成。 因此,训练集和测试集分别包含60000和10000张图像。 测试数据集不会用于训练,只用于评估模型性能。
# 获取数据集长度
len(mnist_train), len(mnist_test)
(60000, 10000)
每个输入的灰度图像的高度和宽度均为28像素,通道数为1。
mnist_train[0