动手学深度学习(pytorch)学习记录9-图像分类数据集之Fashion-MNIST[学习记录]

注:本代码在jupyter notebook上运行
封面图片来源

Fashion-MNIST是一个广泛使用的图像数据集,主要用于机器学习算法的基准测试,特别是图像分类和识别任务。Fashion-MNIST由德国的时尚科技公司Zalando旗下的研究部门提供。作为MNIST手写数字集的一个直接替代品,旨在提供更具挑战性且更现代的机器学习基准测试数据集。数据集的图像结构简单,但分类难度相比MNIST有所提升,要求模型具备更强的特征提取和模式识别能力。
数据集总共包含70,000张灰度图像,分为60,000张训练图像和10,000张测试图像。其中每张图像都是28x28像素的灰度图像。涵盖了10种不同的衣物类型,包括T恤、裤子、套衫、裙子、外套、凉鞋、汗衫、运动鞋、包和踝靴。

%matplotlib inline
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
# from d2l import torch as d2l

# d2l.use_svg_display()

Fashion-MNIST数据集下载

# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0~1之间
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
    root="data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
    root="data", train=False, transform=trans, download=True)

在这里插入图片描述
Fashion-MNIST由10个类别的图像组成, 每个类别由训练数据集(train dataset)中的6000张图像和测试数据集(test dataset)中的1000张图像组成。 因此,训练集和测试集分别包含60000和10000张图像。 测试数据集不会用于训练,只用于评估模型性能。

# 获取数据集长度
len(mnist_train), len(mnist_test)

(60000, 10000)

每个输入的灰度图像的高度和宽度均为28像素,通道数为1。

mnist_train[0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

walfar

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值