import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l
# 用SVG格式画图
d2l.use_svg_display()
# 1、读取数据集
# 通过框架中的内置函数将Fashion-MNIST数据集下载
# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0到1之间
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
root="data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
root="data", train=False, transform=trans, download=True)
print(len(mnist_train), len(mnist_test))
print(mnist_train[0][0].shape)
# 每个输入图像的高度和宽度均为28像素。 数据集由灰度图像组成,其通道数为1。
# 将数字标签索引转换为其文本名称
def get_fashion_mnist_labels(labels):
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels]
# 不是很懂下面的代码
def show_images(img, num_rows, num_cols, titles=None, scale=1.5):
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, img)):
if torch.is_tensor(img):
# 张量格式的图片
ax.imshow(img.numpy())
else:
# PIL图片
ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
# 看下一批量的图片数据
X, y = next(iter(data.DataLoader(mnist_train, batch_size =18)))
print(X.shape)
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y))
d2l.plt.show()
# 2、读取小批量
batch_size = 256
def get_dataloader_workers():
# 使用 4个线程读数据
return 4 # windows改为0最好
# 通过内置数据迭代器,我们可以随机打乱了所有样本,从而无偏见地读取小批量。
train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers())
# 看下读取所有样本所用的时间
timer = d2l.Timer()
for X, y in train_iter:
continue
print(f'{timer.stop():.2f} sec')
# 3、整合以上的步骤
def load_data_fashion_mnist(batch_size, resize=None):
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(
root="data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
root="data", train=False, transform=trans, download=True)
return (data.DataLoader(mnist_train, batch_size, shuffle=True,
num_workers=get_dataloader_workers()),
data.DataLoader(mnist_test, batch_size, shuffle=False,
num_workers=get_dataloader_workers()))
# train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
# # 看下数据形状
# for X, y in train_iter:
# print(X.shape, X.dtype, y.shape, y.dtype)
# break
如果是windows,最好将get_dataloader_workers()返回0,不然容易报错,或者将整个代码移入main中。
- 报错信息:
- 解法:
1、习惯用法为:freeze_support()函数紧跟在main后。即添加main函数
2、将num_workers设为0 - 原因:
程序在运行时启用了多线程,而多线程的使用用到了freeze_support()函数。freeze_support()函数在linux和类unix系统上可直接运行,在windows系统中需要跟在main后边。
参考Pytorch中Dataloader踩坑:RuntimeError: DataLoader worker (pid(s) 6700, 10620) exited unexpectedly