3.5 fashion-MNIST图像分类数据集

import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l

# 用SVG格式画图
d2l.use_svg_display()

# 1、读取数据集
# 通过框架中的内置函数将Fashion-MNIST数据集下载
# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0到1之间
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
    root="data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
    root="data", train=False, transform=trans, download=True)

print(len(mnist_train), len(mnist_test))
print(mnist_train[0][0].shape)
# 每个输入图像的高度和宽度均为28像素。 数据集由灰度图像组成,其通道数为1。

# 将数字标签索引转换为其文本名称
def get_fashion_mnist_labels(labels):
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]

# 不是很懂下面的代码
def show_images(img, num_rows, num_cols, titles=None, scale=1.5):
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, img)):
        if torch.is_tensor(img):
            # 张量格式的图片
            ax.imshow(img.numpy())
        else:
            # PIL图片
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes
# 看下一批量的图片数据
X, y = next(iter(data.DataLoader(mnist_train, batch_size =18)))
print(X.shape)
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y))
d2l.plt.show()

# 2、读取小批量
batch_size = 256
def get_dataloader_workers():
    # 使用 4个线程读数据
    return 4 # windows改为0最好

# 通过内置数据迭代器,我们可以随机打乱了所有样本,从而无偏见地读取小批量。
train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True, num_workers=get_dataloader_workers())

# 看下读取所有样本所用的时间
timer = d2l.Timer()
for X, y in train_iter:
    continue
print(f'{timer.stop():.2f} sec')

# 3、整合以上的步骤
def load_data_fashion_mnist(batch_size, resize=None):
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=get_dataloader_workers()))

# train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
# # 看下数据形状
# for X, y in train_iter:
#     print(X.shape, X.dtype, y.shape, y.dtype)
#     break

如果是windows,最好将get_dataloader_workers()返回0,不然容易报错,或者将整个代码移入main中。

  • 报错信息:
    在这里插入图片描述
    在这里插入图片描述
  • 解法:
    1、习惯用法为:freeze_support()函数紧跟在main后。即添加main函数
    2、将num_workers设为0
  • 原因:
    程序在运行时启用了多线程,而多线程的使用用到了freeze_support()函数。freeze_support()函数在linux和类unix系统上可直接运行,在windows系统中需要跟在main后边。

参考Pytorch中Dataloader踩坑:RuntimeError: DataLoader worker (pid(s) 6700, 10620) exited unexpectedly

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值