二分法算法

1、二分法概述

探究几个最常用的二分查找场景:寻找一个数、寻找左侧边界、寻找右侧边界。
而且,我们就是要深入细节,比如不等号是否应该带等号,mid 是否应该加一等等。分析这些细节的差异以及出现这些差异的原因,保证你能灵活准确地写出正确的二分查找算法。

1.1、二分查找框架

int binarySearch(int[] nums, int target) {
    int left = 0, right = ...;

    while(...) {
        int mid = (right + left) / 2;
        if (nums[mid] == target) {
            ...
        } else if (nums[mid] < target) {
            left = ...
        } else if (nums[mid] > target) {
            right = ...
        }
    }
    return ...;
}

分析二分查找的一个技巧是:不要出现 else,而是把所有情况用 else if 写清楚,这样可以清楚地展现所有细节。本文都会使用 else if,旨在讲清楚,读者理解后可自行简化。
其中 … 标记的部分,就是可能出现细节问题的地方,当你见到一个二分查找的代码时,首先注意这几个地方。后文用实例分析这些地方能有什么样的变化。
另外声明一下,计算 mid 时需要技巧防止溢出,即 mid=left+(right-left)/2。本文暂时忽略这个问题。

2、二分法常见例题

2.1、查找一个数

这个场景是最简单的,可能也是大家最熟悉的,即搜索一个数,如果存在,返回其索引,否则返回 -1。

int binarySearch(int[] nums, int target) {
    int left = 0;
    int right = nums.length - 1; // 注意

    while(left <= right) {
        int mid = (right + left) / 2;
        if(nums[mid] == target)
            return mid;
        else if (nums[mid] < target)
            left = mid + 1; // 注意
        else if (nums[mid] > target)
            right = mid - 1; // 注意
        }
    return -1;
}

2.1.1、 为什么 while 循环的条件中是 <=,而不是 < ?

:因为初始化 right 的赋值是 nums.length-1,即最后一个元素的索引,而不是 nums.length。
这二者可能出现在不同功能的二分查找中,区别是:前者相当于两端都闭区间 [left, right],后者相当于左闭右开区间 [left, right),因为索引大小为 nums.length 是越界的。
我们这个算法中使用的是前者 [left, right] 两端都闭的区间。这个区间其实就是每次进行搜索的区间,我们不妨称为「搜索区间」。
什么时候应该停止搜索呢?当然,找到了目标值的时候可以终止:

if(nums[mid] == target)
    return mid;

但如果没找到,就需要 while 循环终止,然后返回 -1。那 while 循环什么时候应该终止?搜索区间为空的时候应该终止,意味着你没得找了,就等于没找到嘛。
while(left <= right) 的终止条件是 left == right + 1,写成区间的形式就是 [right + 1, right],或者带个具体的数字进去 [3, 2],可见这时候搜索区间为空,因为没有数字既大于等于 3 又小于等于 2 的吧。所以这时候 while 循环终止是正确的,直接返回 -1 即可。
while(left < right) 的终止条件是 left == right,写成区间的形式就是 [left, right],或者带个具体的数字进去 [2, 2],这时候搜索区间非空,还有一个数 2,但此时 while 循环终止了。也就是说这区间 [2, 2] 被漏掉了,索引 2 没有被搜索,如果这时候直接返回 -1 就是错误的。
当然,如果你非要用 while(left < right) 也可以,我们已经知道了出错的原因,就打个补丁好了:

//...
while(left < right) {
    // ...
}
return nums[left] == target ? left : -1;
2.1.2、为什么 left = mid + 1,right = mid - 1?我看有的代码是 right = mid 或者 left = mid,没有这些加加减减,到底怎么回事,怎么判断?

**答:**这也是二分查找的一个难点,不过只要你能理解前面的内容,就能够很容易判断。
刚才明确了「搜索区间」这个概念,而且本算法的搜索区间是两端都闭的,即 [left, right]。那么当我们发现索引 mid 不是要找的 target 时,如何确定下一步的搜索区间呢?
当然是 [left, mid - 1] 或者 [mid + 1, right] 对不对?因为 mid 已经搜索过,应该从搜索区间中去除。

2.1.3、此算法有什么缺陷?

**答:**至此,你应该已经掌握了该算法的所有细节,以及这样处理的原因。但是,这个算法存在局限性。
比如说给你有序数组 nums = [1,2,2,2,3],target = 2,此算法返回的索引是 2,没错。但是如果我想得到 target 的左侧边界,即索引 1,或者我想得到 target 的右侧边界,即索引 3,这样的话此算法是无法处理的。
这样的需求很常见。你也许会说,找到一个 target,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的复杂度了。
我们后续的算法就来讨论这两种二分查找的算法。

2.2、寻找左侧边界的二分搜索

直接看代码,其中的标记是需要注意的细节:

int left_bound(int[] nums, int target) {
    if (nums.length == 0) return -1;
    int left = 0;
    int right = nums.length; // 注意

    while (left < right) { // 注意
        int mid = (left + right) / 2;
        if (nums[mid] == target) {
            // 当找到 target 时,收缩右侧边界
            right = mid;
        } else if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid; // 注意
        }
    }
    return left;
}
2.2.1、对几种情况进行分析

假设输入的数组nums = [1,2,3,3,3,5,7],想搜索的元素target = 3,那么算法就会返回索引 2。
如果画一个图,就是这样:
image.png
那么我们来分析一下每轮二分的的流程和取值

  1. 第一轮分析

image.png
那么这里可能有人不能理解为什么 nums[mid] == target 符合条件的区间为左边的区间,为什么不能为右区间
:我们这里是求左边界,我们如果取右区间作为符合条件的区间 mid 位置的值就和target相等,mid 不是更应该更左嘛?这里就解释的通为什么是取左区间。

  1. 第二轮分析

image.png
那么这里可能有人不能理解为什么 nums[mid] < target 符合条件的区间为右区间,为什么不能为左区间
:我们这里是求左边界,我们如果取左区间作为符合条件的区间 mid 位置的值就小于target相等,如果取左区间的值就找不到target相等的值了?这里就解释的通为什么是取右区间。

  1. 第三轮分析

image.png
这里的逻辑和之前的第一轮的逻辑相同,只是多了应该结束条件。

2.2.2、 为什么 while(left < right) 而不是 <= ?

:用相同的方法分析,因为 right = nums.length 而不是 nums.length - 1 。因此每次循环的「搜索区间」是 [left, right) 左闭右开。
while(left < right) 终止的条件是 left == right,此时搜索区间 [left, left) 为空,所以可以正确终止。

2.2.3、为什么没有返回 -1 的操作?如果 nums 中不存在 target 这个值,怎么办?

答:因为要一步一步来,先理解一下这个「左侧边界」有什么特殊含义:
image.png
对于这个数组,算法会返回 1。这个 1 的含义可以这样解读:nums 中小于 2 的元素有 1 个。
比如对于有序数组 nums = [2,3,5,7], target = 1,算法会返回 0,含义是:nums 中小于 1 的元素有 0 个。
再比如说 nums 不变,target = 8,算法会返回 4,含义是:nums 中小于 8 的元素有 4 个。
综上可以看出,函数的返回值(即 left 变量的值)取值区间是闭区间 [0, nums.length],所以我们简单添加两行代码就能在正确的时候 return -1:

while (left < right) {
    //...
}
// target 比所有数都大
if (left == nums.length) return -1;
// 类似之前算法的处理方式
return nums[left] == target ? left : -1;
2.2.4、为什么 left = mid + 1,right = mid ?和之前的算法不一样?

:这个很好解释,因为我们的「搜索区间」是 [left, right) 左闭右开,所以当 nums[mid] 被检测之后,下一步的搜索区间应该去掉 mid 然后分割成两个区间,即 [left, mid) 或 [mid + 1, right)。

2.2.5、 为什么该算法能够搜索左侧边界?

:关键在于对于 nums[mid] == target 这种情况的处理:

if (nums[mid] == target)
    right = mid;

可见,找到 target 时不要立即返回,而是缩小「搜索区间」的上界 right,在区间 [left, mid) 中继续搜索,即不断向左收缩,达到锁定左侧边界的目的。

2.2.6、为什么返回 left 而不是 right?

:都是一样的,因为 while 终止的条件是 left == right。

2.3、寻找右侧边界的二分查找

寻找右侧边界和寻找左侧边界的代码差不多,只有两处不同,已标注:

int right_bound(int[] nums, int target) {
    if (nums.length == 0) return -1;
    int left = 0, right = nums.length;

    while (left < right) {
        int mid = (left + right) / 2;
        if (nums[mid] == target) {
            left = mid + 1; // 注意
        } else if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid;
        }
    }
    return left - 1; // 注意
}
2.3.1、 为什么这个算法能够找到右侧边界?

:类似地,关键点还是这里:

if (nums[mid] == target) {
    left = mid + 1;

当 nums[mid] == target 时,不要立即返回,而是增大「搜索区间」的下界 left,使得区间不断向右收缩,达到锁定右侧边界的目的。

2.3.2、为什么最后返回 left - 1 而不像左侧边界的函数,返回 left?而且我觉得这里既然是搜索右侧边界,应该返回 right 才对。

:首先,while 循环的终止条件是 left == right,所以 left 和 right 是一样的,你非要体现右侧的特点,返回 right - 1 好了。
至于为什么要减一,这是搜索右侧边界的一个特殊点,关键在这个条件判断:

if (nums[mid] == target) {
    left = mid + 1;
    // 这样想: mid = left - 1

image.png
因为我们对 left 的更新必须是 left = mid + 1,就是说 while 循环结束时,nums[left] 一定不等于 target 了,而 nums[left-1] 可能是 target。
至于为什么 left 的更新必须是 left = mid + 1,同左侧边界搜索,就不再赘述。

2.3.3、为什么没有返回 −1 的操作?如果 nums 中不存在 target 这个值,怎么办?

:类似之前的左侧边界搜索,因为 while 的终止条件是 left == right,就是说 left 的取值范围是 [0, nums.length],所以可以添加两行代码,正确地返回 −1:

while (left < right) {
    // ...
}
if (left == 0) return -1;
return nums[left-1] == target ? (left-1) : -1;

3、最后总结

来梳理一下这些细节差异的因果逻辑:
第一个,最基本的二分查找算法:

因为我们初始化 right = nums.length - 1
所以决定了我们的「搜索区间」是 [left, right]
所以决定了 while (left <= right)
同时也决定了 left = mid+1 和 right = mid-1

因为我们只需找到一个 target 的索引即可
所以当 nums[mid] == target 时可以立即返回

第二个,寻找左侧边界的二分查找:

因为我们初始化 right = nums.length
所以决定了我们的「搜索区间」是 [left, right)
所以决定了 while (left < right)
同时也决定了 left = mid + 1 和 right = mid
因为我们需找到 target 的最左侧索引
所以当 nums[mid] == target 时不要立即返回
而要收紧右侧边界以锁定左侧边界

第三个,寻找右侧边界的二分查找:

因为我们初始化 right = nums.length
所以决定了我们的「搜索区间」是 [left, right)
所以决定了 while (left < right)
同时也决定了 left = mid + 1 和 right = mid

因为我们需找到 target 的最右侧索引
所以当 nums[mid] == target 时不要立即返回
而要收紧左侧边界以锁定右侧边界

又因为收紧左侧边界时必须 left = mid + 1
所以最后无论返回 left 还是 right,必须减一

如果以上内容你都能理解,那么恭喜你,二分查找算法的细节不过如此。

4、二分搜索问题的泛化

什么问题可以运用二分搜索算法技巧?
首先,你要从题目中抽象出一个自变量x,一个关于x的函数f(x),以及一个目标值target
同时,x, f(x), target还要满足以下条件:

  1. f(x)必须是在x上的单调函数(单调增单调减都可以)
  2. 题目是让你计算满足约束条件f(x) == target时的x的值

上述规则听起来有点抽象,来举个具体的例子:
给你一个升序排列的有序数组nums以及一个目标元素target,请你计算target在数组中的索引位置,如果有多个目标元素,返回最小的索引。
这就是「搜索左侧边界」这个基本题型,解法代码之前都写了,但这里面x, f(x), target分别是什么呢?
我们可以把数组中元素的索引认为是自变量x,函数关系f(x)就可以这样设定:

// 函数 f(x) 是关于自变量 x 的单调递增函数
// 入参 nums 是不会改变的,所以可以忽略,不算自变量
int f(int x, int[] nums) {
    return nums[x];
}

其实这个函数f就是在访问数组nums,因为题目给我们的数组nums是升序排列的,所以函数f(x)就是在x上单调递增的函数。
最后,题目让我们求什么来着?是不是让我们计算元素target的最左侧索引?
是不是就相当于在问我们「满足f(x) == target的x的最小值是多少」?

// 函数 f 是关于自变量 x 的单调递增函数
int f(int x, int[] nums) {
    return nums[x];
}

int left_bound(int[] nums, int target) {
    if (nums.length == 0) return -1;
    int left = 0, right = nums.length;

    while (left < right) {
        int mid = left + (right - left) / 2;
        if (f(mid, nums) == target) {
            // 当找到 target 时,收缩右侧边界
            right = mid;
        } else if (f(mid, nums) < target) {
            left = mid + 1;
        } else if (f(mid, nums) > target) {
            right = mid;
        }
    }
    return left;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值