Bellman_ford算法思想及模板

Bellman_ford 算法模板
整体思想:遍历从起点经过几条能到达的点,每次都增加一条边并且判断是否更新dist中的距离 

void bellman_ford()
{
    for (int i = 0;i < n;i ++)  //循环n次,n为图的顶点数。迭代k次的意义是经过不超过k次的点可以到达的最短路径 
    {
        memcopy(last, dist, sizeof dist);  //备份一下dist,防止下面直接使用dist判断更新发生串联
        for (int j = 0;j < m;j ++)   //a,b,w
        {
            dist[b] = min(dist[b], dist[a] + w);
        } 
    }

} 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: Bellman-Ford算法是一种用于解决单源最短路径问题的算法,它可以处理有负权边的图。在Matlab中,可以使用图论工具箱中的函数来实现Bellman-Ford算法。具体步骤如下: 1. 创建一个图对象,使用addnode函数添加节点,使用addedge函数添加边。 2. 使用bellmanford函数计算从源节点到所有其他节点的最短路径。 3. 使用getshortestpath函数获取最短路径。 需要注意的是,如果图中存在负环,则Bellman-Ford算法将无法得出正确的结果。因此,在使用该算法时,需要先检查图中是否存在负环。 ### 回答2: Bellman-Ford算法是一种解决单源最短路径问题的动态规划算法,常被用于解决网络路由问题。 在Matlab中实现Bellman-Ford算法,可以采用邻接矩阵表示图,并用一个一维数组记录各个节点的最短距离。具体实现步骤如下: 1. 初始化距离数组,将起点到自己的距离设为0,其他节点到起点的距离设为正无穷,表示暂时还不知道最短路径。 2. 对所有边进行遍历,将每条边重新计算其起点到终点的距离,如果这个距离比之前记录的最短距离小,则更新最短距离。 3. 重复第二步,对所有边进行遍历,不断更新距离数组中节点的距离,直到距离数组不再变化或者超过了图中节点的数量。 4. 最后得到的距离数组即为起点到各个节点的最短距离,可以根据此数组得到最短路径。 具体实现中,还需要注意一些细节问题,如处理负权边的情况,处理图中存在环的情况等,具体可以参考相关的Matlab实现代码。 ### 回答3: Bellman-Ford算法是一种用于解决带有负权边的单源最短路径问题的算法。其核心思想是通过松弛操作不断更新每个节点的最短路径,在每次更新中都遍历图中所有的边,直到达到最优解。 在MATLAB中,可以使用图论工具箱中的bellman_ford函数实现Bellman-Ford算法。该函数接收一个图的邻接矩阵以及起始节点作为输入,并返回包含每个节点最短路径和前驱节点信息的两个向量。 下面是一个使用bellman_ford函数求解最短路径的示例: ```matlab % 创建图的邻接矩阵 G = [0 -1 4 0 0; ... 0 0 3 2 2; ... 0 0 0 0 0; ... 0 1 5 0 0; ... 0 0 0 -3 0]; % 执行Bellman-Ford算法 [sourceDist, pred] = bellman_ford(G, 1); % 输出节点1到其他节点路径距离和前驱节点信息 for i=1:length(sourceDist) fprintf('Node %d: distance %d, predecessor %d\n', i, sourceDist(i), pred(i)); end ``` 在上述示例中,我们首先创建了一个邻接矩阵来表示一个有向带权图,然后调用bellman_ford函数并将其应用到起始节点1上。最后,我们输出每个节点的最短路径长度和前驱节点信息。 需要注意的是,Bellman-Ford算法的时间复杂度为O(mn),其中m和n分别为图的边数和节点数。因此,在处理大规模图时需要谨慎使用,并考虑更高效的算法

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

莱mx

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值