Mamba windows 环境安装踩坑 ModuleNotFoundError: No module named ‘causal_conv1d_cuda‘|‘selective_scan_cuda‘

电脑环境:

windows11   cuda11.6(最高只到11.6了,呜呜)

torch 1.13  python 3.10

这里有一个点需要注意,安装mamba的时候需要安装一个依赖包 triton ,本来triton 没有windows版,于是github上有大佬编译了triton-windows版本,我去查看的时候只有适配py3.10版本的(这个点我记得比较清楚,当时我搜索的时候只有适配 py3.1 0的,为此我安装了python3.10)。

目前triton更新了多少,我并不清楚,所以最好提前搜索一下 trition 的wheel下载,确定一下现在有多少适配的版本,如果适配现有python版本的话就不用换python版本了,省了一个步骤。

回到正题,对于mamba安装,在github上只能找到cu118的wheel, 所以我选择的是源代码安装,方法参考下面的文章(在此说明,我并不清楚cu116的环境,下载cu118的wheel是不是能安装使用,不过你们可以试试,最好反馈一下,如果可以的话,下次我就不用这么麻烦了)

安装以后就会

### 解决 `selective_scan_cuda` 导入失败的分析 #### 背景说明 在某些特定环境下,当尝试导入 `selective_scan_cuda` 或其依赖模块(如 `causal_conv1d_cuda`)时,可能会遇到诸如 `ImportError: DLL load failed while importing causal_conv1d_cuda: 找不到指定的程序` 的错误[^3]。这种问题通常与动态链接库 (DLL) 加载失败有关。 以下是可能的原因及其对应的解决方案: --- #### 可能原因及解决方法 ##### 1. CUDA 版本不匹配 如果使用的 PyTorch 或其他 GPU 库版本与当前安装CUDA 驱动版本不符,则可能导致无法加载所需的 `.dll` 文件。 - **验证环境**:确认所用的 PyTorch 和 CUDA 已正确适配。例如,PyTorch 官方文档提供了不同版本间的兼容表[^2]。 - **修复措施**: - 卸载现有 CUDA 并重新安装适合目标框架的版本。 - 使用命令更新至推荐版本: ```bash pip install torch==<version> torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu<cuda_version> ``` ##### 2. 缺少必要的编译工具链 有时即使安装了正确的驱动和框架,仍需额外配置开发工具来支持自定义扩展操作。 - **检查条件**:确保已安装 Microsoft Visual C++ Redistributable Latest Update[^4]。 - **执行步骤**: - 下载并运行最新版 VC++ 运行时补丁; - 对于 Linux 用户,请预先设置 GCC/G++ 至适当水平并通过 Conda 环境管理器同步调整路径变量。 ##### 3. 动态库文件缺失或损坏 部分情况下,由于网络传输中断等原因造成下载资源不全亦或是本地缓存数据遭到破坏都会引发此类异常现象。 - **排查手段**:进入 Python site-packages 查找对应目录下的 so/pyd 文件是否存在以及完整性如何? - **处理办法**: - 清理旧有残留物后再重试安装过程即可恢复正常功能状态。 ```python import shutil shutil.rmtree('<path_to_your_env>/lib/pythonX.X/site-packages/mamba_ssm') pip uninstall mamba-smm && pip install git+https://github.com/<repo>.git@branch_name#egg=package-name ``` --- ### 总结建议 综合上述讨论可知,针对 `selective_scan_cuda` 导入失败的情况可以从以下几个方面入手解决问题:一是核查基础软件栈的一致性;二是补充完善辅助性的构建要素;三是及时替换受损的目标组件实例。最终达到消除错误提示的目的。 ---
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值