[计算机数值分析]利用秦九韶算法求多项式的值

Spring-_-Bear 的 CSDN 博客导航

例:利用秦九韶算法求

p ( x ) = x 5 − 3 x 4 + 4 x 2 − x + 1 p(x)=x^{5}-3x^{4}+4x^{2}-x+1 p(x)=x53x4+4x2x+1

当 x = 3 时的值。

解:上式按秦九韶算法展开得 p ( x ) = ( x ( x ( x ( x − 3 ) + 4 ) − 1 ) + 1 ) p(x)=(x(x(x(x-3)+4)-1)+1) p(x)=(x(x(x(x3)+4)1)+1),对它的解释为最高次项的系数与 x x x 的乘积加上次高项的系数,这个结果作为下一次循环的系数。例如 ( x ( x − 3 ) + 4 ) (x(x-3)+4) (x(x3)+4) 等于上一次计算结果 ( x − 3 ) (x-3) (x3) x x x 的乘积 x ( x − 3 ) x(x-3) x(x3) 加上次高项 ( x ( x − 3 ) + 4 ) (x(x-3)+4) (x(x3)+4) 的系数 4。依次迭代,最终得出多项式的值。

运行示例:

在这里插入图片描述

程序源码:

#include <iostream>

using namespace std;

int main(void)
{
    double x;
    cout << "请输入自变量 x 的值:";
    cin >> x;

    int up;
    cout << "请输入最高次项的次数:";
    cin >> up;

    double coefficient;
    cout << "请输入 " << up << " 次项的系数:";
    cin >> coefficient;

    // 把 sum 赋值为最里层最高次项的系数, 以便进入第一次循环时进行最里层第一项的计算,避免再次输入次高项系数时最高项系数被覆盖
    double sum = coefficient;
    for (int i = up - 1; i >= 0; i--)
    {
        if (i == 0)
        {
            cout << "请输入常数项的值:";
            cin >> coefficient;
        }
        else
        {
            cout << "请输入 " << i << " 次项的系数:";
            cin >> coefficient;
        }

        // 按秦九韶算法展开,最里面一项为最高次项的一次乘系数加上次高项的系数,往后依次迭代
        sum = sum * x + coefficient;
    }

    cout << "\n所求多项式的值为:" << sum << endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

春天熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值