[计算机数值分析]埃特金算法加速迭代法求根过程

Spring-_-Bear 的 CSDN 博客导航

由于 前有加速方案 需要提供迭代函数 φ ( x ) φ(x) φ(x) 的导数 φ ′ ( x ) φ'(x) φ(x) 而不便于实际应用。

若将迭代值 x ‾ k + 1 \overline{x}_{k+1} xk+1 = φ ( x k ) \varphi(x_{k}) φ(xk) 再迭代一次,得

x ~ k + 1 = φ ( x ‾ k + 1 ) \widetilde{x}_{k+1}=\varphi{(\overline{x}_{k+1})} x k+1=φ(xk+1)

由于

x ∗ − x ~ k + 1 ≈ L ( x ∗ − x ‾ k + 1 ) x^{*}-\widetilde{x}_{k+1}\approx L(x^{*}-\overline{x}_{k+1}) xx k+1L(xxk+1)

将其与

x ∗ − x ‾ k + 1 ≈ L ( x ∗ − x k ) x^{*} - \overline{x}_{k+1} \approx L(x^{*}-x_{k}) xxk+1L(xxk)

联立,消去未知的 L,有

x ∗ − x ‾ k + 1 x ∗ − x ~ k + 1 ≈ x ∗ − x k x ∗ − x ‾ k + 1 \frac{x^{*}-\overline{x}_{k+1}}{x^{*}-\widetilde{x}_{k+1}}\approx\frac{x^{*}-x_{k}}{x^{*}-\overline{x}_{k+1}} xx k+1xxk+1xxk+1xxk

由此得

x ∗ ≈ x ~ k + 1 − ( x ~ k + 1 − x ‾ k + 1 ) 2 x ~ k + 1 − 2 x ‾ k + 1 + x k x^{*}\approx\widetilde{x}_{k+1}-\frac{(\widetilde{x}_{k+1}-\overline{x}_{k+1})^{2}}{\widetilde{x}_{k+1}-2\overline{x}_{k+1}+x_{k}} xx k+1x k+12xk+1+xk(x k+1xk+1)2

若以上式右端得出得结果作为新的改进值,则这样构造出得加速公式不再含有关于导数的信息,但它需要使用两次迭代值进行加工。其具体计算公式如下:

  1. 迭代 x ‾ k + 1 \overline{x}_{k+1} xk+1 = φ ( x k ) \varphi(x_{k}) φ(xk)
  2. 迭代 x ~ k + 1 = φ ( x ‾ k + 1 ) \widetilde{x}_{k+1}=\varphi{(\overline{x}_{k+1})} x k+1=φ(xk+1)
  3. 改进 x k + 1 = x ~ k + 1 − ( x ~ k + 1 − x ‾ k + 1 ) 2 x ~ k + 1 − 2 x ‾ k + 1 + x k x_{k+1}=\widetilde{x}_{k+1}-\frac{(\widetilde{x}_{k+1}-\overline{x}_{k+1})^{2}}{\widetilde{x}_{k+1}-2\overline{x}_{k+1}+x_{k}} xk+1=x k+1x k+12xk+1+xk(x k+1xk+1)2

上述方法称为埃特金(Aitken)加速方法。

使用埃特金加速算法解前例 求方程 x 3 − x − 1 = 0 x^{3} -x-1=0 x3x1=0 的唯一正根,如下图所示,埃特金算法的加速效果是显著的。

运行示例:

  1. 未使用加速算法,需要迭代 9 次
    在这里插入图片描述
  2. 使用普通加速算法,需要迭代 4 次
    在这里插入图片描述
  3. 使用埃特金加速算法,仅需迭代 2 次
    在这里插入图片描述

程序源码:

#include <iostream>
#include <cmath>

using namespace std;

/**
 * f(x) = (x+1)^{1/3)
 */
double f(double x)
{
    return pow(x + 1, 1.0 / 3);
}

int main(void)
{
    double x0;
    cout << "请输入迭代初值:";
    cin >> x0;

    double accrucy;
    cout << "请输入精度:";
    cin >> accrucy;

    int n;
    cout << "请输入您想要的最大迭代次数:";
    cin >> n;

    double x3;
    int count = 0;
    do
    {
        double x1 = f(x0);
        double x2 = f(x1);
        // x3 为利用埃特金加速公式处理后的近似解
        x3 = x2 - pow(x2 - x1, 2) / (x2 - 2 * x1 + x0);

        if (abs(x0 - x3) < accrucy)
        {
            cout << "近似解为:" << x3 << endl;
            break;
        }

        // 继续下一次迭代,直至找到符合精度要求的根或最大迭代次数用完
        cout << "第 " << ++count << " 次迭代!\t迭代函数的值为:" << x3 << "\t此次迭代精度为:" << abs(x3 - x0) << endl;
        double item = x0;
        x0 = x3;
        x3 = item;

        if (count > n)
        {
            cout << "迭代次数耗尽,迭代结束!未找到符合精度要求的根!!!" << endl;
            break;
        }

    } while (abs(x0 - x3) >= accrucy);

    return 0;
}
  • 7
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

春天熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值