本题要求实现一个函数,计算下列简单交错幂级数的部分和:f(x, n) = x - x2 + x3 - x4 + … + (-1)n-1xn。
函数接口定义:
double fn( double x, int n );
其中题目保证传入的 n 是正整数,并且输入输出都在双精度范围内。函数 fn 应返回上述级数的部分和。建议尝试用递归实现。
裁判测试程序样例:
#include <stdio.h>
double fn( double x, int n );
int main()
{
double x;
int n;
scanf("%lf %d", &x, &n);
printf("%.2f\n", fn(x,n));
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
0.5 12
输出样例:
0.33
来源:
来源:PTA | 程序设计类实验辅助教学平台
链接:https://pintia.cn/problem-sets/13/exam/problems/577
提交:

题解:
#include <math.h>
/*
* 计算下列简单交错幂级数的部分和:f(x, n) = x - x^2^ + x^3^ - x^4^ + ... + (-1)^n-1^x^n^
*/
double fn(double x, int n) {
if (n == 1) {
return x;
}
// 从 f(x,n) 的表达式可观察得出此迭代格式
return pow(-1, n - 1) * pow(x, n) + fn(x, n - 1);
}
该博客介绍如何使用递归算法计算交错幂级数f(x,n)=x-x^2+x^3-x^4+…+(-1)^n-1*x^n的部分和。提供的代码示例中,定义了一个doublefn函数,该函数接受一个双精度浮点数x和一个正整数n作为参数,返回级数的部分和。在给定的输入样例中,当x=0.512, n=12时,输出的部分和为0.33。
307

被折叠的 条评论
为什么被折叠?



