[PTA]6-2 多项式求值

Spring-_-Bear 的 CSDN 博客导航

本题要求实现一个函数,计算阶数为 n,系数为 a[0] … a[n] 的多项式 f(x) = ∑ni=0(a[i]xi) 在 x 点的值。

函数接口定义:

double f( int n, double a[], double x );

其中 n 是多项式的阶数,a[] 中存储系数,x 是给定点。函数须返回多项式 f(x) 的值。

裁判测试程序样例:

#include <stdio.h>

#define MAXN 10

double f( int n, double a[], double x );

int main()
{
    int n, i;
    double a[MAXN], x;

    scanf("%d %lf", &n, &x);
    for ( i=0; i<=n; i++ )
        scanf(%lf”, &a[i]);
    printf("%.1f\n", f(n, a, x));
    return 0;
}

/* 你的代码将被嵌在这里 */

输入样例:

2 1.1
1 2.5 -38.7

输出样例:

-43.1

来源:

来源:PTA | 程序设计类实验辅助教学平台
链接:https://pintia.cn/problem-sets/14/exam/problems/734

提交:

在这里插入图片描述

题解:

#include<math.h>

/*
 * 计算阶数为 n,系数为 a[0] ... a[n] 的多项式 f(x) = ∑^n^~i=0~(a[i]x^i^) 在 x 点的值
 */
double f(int n, double a[], double x) {
    double sum = 0;

    for (int i = 0; i <= n; i++) {
        // sum = a[0]*x⁰ + a[1]*x¹ + ···
        sum += a[i] * pow(x, i);
    }

    return sum;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

春天熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值