本题要求实现一个函数,计算阶数为 n,系数为 a[0] … a[n] 的多项式 f(x) = ∑ni=0(a[i]xi) 在 x 点的值。
函数接口定义:
double f( int n, double a[], double x );
其中 n 是多项式的阶数,a[] 中存储系数,x 是给定点。函数须返回多项式 f(x) 的值。
裁判测试程序样例:
#include <stdio.h>
#define MAXN 10
double f( int n, double a[], double x );
int main()
{
int n, i;
double a[MAXN], x;
scanf("%d %lf", &n, &x);
for ( i=0; i<=n; i++ )
scanf(“%lf”, &a[i]);
printf("%.1f\n", f(n, a, x));
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
2 1.1
1 2.5 -38.7
输出样例:
-43.1
来源:
来源:PTA | 程序设计类实验辅助教学平台
链接:https://pintia.cn/problem-sets/14/exam/problems/734
提交:
题解:
#include<math.h>
/*
* 计算阶数为 n,系数为 a[0] ... a[n] 的多项式 f(x) = ∑^n^~i=0~(a[i]x^i^) 在 x 点的值
*/
double f(int n, double a[], double x) {
double sum = 0;
for (int i = 0; i <= n; i++) {
// sum = a[0]*x⁰ + a[1]*x¹ + ···
sum += a[i] * pow(x, i);
}
return sum;
}