一项关于使用非参数检验分析进化算法行为的研究:2005年中欧委员会实参数优化特别会议的案例研究

一项关于使用非参数检验分析进化算法行为的研究:2005年中欧委员会实参数优化特别会议的案例研究

Abstract

摘要近年来,在进化算法领域,实验分析越来越受到人们的关注。值得注意的是,目前已有大量的论文分析并提出了不同类型的问题,如算法实验比较的基础、算法比较中不同方法的提出、算法比较中使用不同统计技术的建议等。在这篇论文中,我们重点研究了统计技术在分析进化算法在优化问题上的行为方面的应用。利用进化算法的实编码优化模型,研究了统计分析结果的必要条件。本研究采用单问题分析和多问题分析两种方法进行。结果表明,当我们处理多个问题的结果时,参数统计分析是不合适的。在多问题分析中,我们建议使用非参数统计检验,因为它们比参数统计检验的限制性更小,而且它们可以在结果的小样本中使用CEC’2005用非参数测试程序优化实参数专题会议。

筹备工作:2005年中央委员会特别会议设置

在本节中,我们将简要介绍CEC2005特别会议中比较的算法、测试功能和实验的特点。

2.1进化算法

在本节中,我们列举了在CEC“2005年特别会议”上提出的11种算法。如需详细了解每一项的描述和参数,请参阅各自的贡献。算法如下:BLX。GL50 (García-Martínez and Lozano 2005)、BLX-MA (Molina et al. 2005)、CoEVO(波伊克2005年),德(伦克嫩等人2005年),DMS-L-PSO(梁和苏甘塔尔)2005), EDA (Yuan and Gallagher 2005), G-CMA-ES (Auger and Hansen 2005a)K-PCX(辛哈等人2005年),L-CMA-ES(奥格和汉森2005b),L-萨德(基尔和Suganthan 2005), SPC-PNX (Ballester et al. 2005)。

2.2 测试函数

在下面的文章中,我们介绍了为2005年IEEE进化大会上组织的实参数优化特别会议设计的一组测试函数
在这里插入图片描述在这里插入图片描述
所有函数都被替换了,以确保它们的最优值永远不会在搜索空间的中心被找到。在两个函数。此外。在初始化范围内找不到optima,搜索域不受限制(最优不在初始化范围内)

2.3 实验的特点

这些实验是按照与竞赛相关的文件中的说明进行的。主要特点有:

  1. 对于每个测试函数,每个算法运行25次,并计算出总体中最优个体的平均误差。
  2. 我们将使用维数D = 10的研究,算法对适应度函数进行10万次评估在上述竞赛中,还进行了D30和D50尺寸的实验
  3. 每次运行都在获得的错误小于10-8时停止。或者达到最大次数的计算。

3 .研究参数试验安全使用所需条件

在本节中,我们将描述和分析安全使用参数测试必须满足的条件(第3.1节)。为此,我们收集了考虑维数D= 10的25个函数中,采用BLX-MA和BLX-GL50算法得到的全部结果。有了它们,我们将首先在单个问题分析(见3.2节)中,对每个函数的结果的完整样本分析所指示的条件。最后。我们将考虑每个函数的平均结果,以合成两种算法的每个结果样本。有了这两个样本,我们将再次检查在多问题方案中安全使用参数测试所需的条件(见第3.3节)。

3.1参数试验安全使用的条件。

在Sheskin(2003年)中,参数检验和非参数检验之间的区别是基于将要分析的数据所代表的测量水平。这样,参数化测试使用由实值组成的数据。后者并不意味着当我们总是处理这种类型的数据时,我们应该使用参数测试。对于参数检验的安全使用,还有其他一些初始假设。不满足这些条件可能会使统计分析失去可信性。为了使用参数测试,必须检查以下条件(Sheskin 2003;Zar 1999):

  1. 独立性:在统计学中,当一个事件的发生不改变另一个事件发生的概率时,两个事件是独立的。
  2. 正态性:当观察的行为符合正态分布或高斯分布,其平均值为u,方差为o时,观察就是正态的。对一个样本进行正态性检验可以表明观察数据中是否存在这种情况。我们将使用三种常态测试:
  • Shapiro-WilkKolmogorov-Smirnov:将观测数据的累积分布与高斯分布的预期累积分布进行比较,得到基于两者差异的p值
  • Shapiro-Wilk:它分析观察到的数据,计算对称程度和峰度(曲线的形状),然后计算与高斯分布的差异,从这些差异的平方和得到p值。
  • D’agostino - pearson:它首先计算偏度和峰度,以量化分布在不对称和形状方面与高斯分布的距离。然后计算这些值与高斯分布的期望值之间的距离。并从这些差异的总和中计算出一个p值。
  1. 异方差性:这一性质表明存在违背方差相等假设的情况。Levene检验用于检验k个样本是否存在方差齐性(方差齐性)。当观测数据不满足正态性条件时,该检验结果比Bartlett检验更可靠。检查相同的属性。

在我们的例子中,很明显事件的独立性,因为它们是随机生成初始种子的算法的独立运行。下面我们将使用Kolmogorov-Smirnov进行正态性分析。ShapiroWilk和D’agostino - pearson检验对单问题和多问题分析,并用Levene检验进行异方差分析。

3.2关于单问题分析所需条件的研究

对每个函数运行25次BLX-GL50和BLX-MA算法得到的结果样本,我们可以应用统计检验来确定它们是否检验了正态性和同方差特性。我们以前已经看到,在这类实验中,独立性条件很容易满足。进行统计分析的运行次数可能较低,但这是中央委员会2005年特别会议的要求本节中使用的所有测试将获得相关的p值,它表示样本结果相对于正态形状的不同程度。因此,低p值表示非正态分布。在本研究中,我们将考虑显著性水平a =0.05,因此p值大于a表示满足正态性条件。所有的计算都通过SPSS统计软件包进行。表1显示了结果,符号“*”表示不满足正规性,括号中是p值。表2显示了应用测试的结果:
在这里插入图片描述
表3为D’agostino - pearson检验结果。
在这里插入图片描述

除了这个一般的研究之外,我们还展示了三种情况下的样本分布,目的是说明正态检验获得不同结果的有代表性的情况。
从图1到图3,显示了直方图和Q-Q图的不同图形表示示例。直方图通过条形图来表示一个统计变量,因此每个条形图的面积与所表示值的频率成正比。Q-Q图表示观察到的四分位数和正态分布的四分位数之间的冲突。
在图1中,我们可以观察到一个异常性质清晰呈现的一般情况。相反,图2是一个正态分布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值