"""
节点的度:子节点的个数
树的度:一棵树中,最大的节点的度就是树的度
叶节点:度为零的节点
兄弟节点:拥有相同父节点
层次:从根开始,根为第一层。。。
树的高度:最大层次
堂兄弟节点:父亲在同一层的节点
节点的祖先:从根到该节点所有的节点
"""
"""
二叉树的性质
性质一:在二叉树的第i层上至多有2^(i-1)个结点(i>0)
性质二:深度为k的二叉树至多有2^k-1个结点(k>0)
性质三:对于任意一棵二叉树,如果其叶结点数为N0,而度为2的结点总数为N2,则N0=N2+1
性质四:具有n个结点的完全二叉树的深度必为log2(n+1)
性质五:对完全二叉树,若从上至下、从左至右编号,则编号为i的结点,其左孩子编号为2i,右孩子编号为2i+1;其双亲的编号为i/2(i=1为根除外)
"""
"""
先序遍历:在先序遍历中,先访问根节点,然后递归使用先序遍历访问左子树,再递归使用先序遍历访问右子树
根节点->左子树->右子树
中序遍历:在中序遍历中,递归使用中序遍历访问左子树,然后访问根节点,最后再递归使用中序遍历访问右子树
左子树->根节点->右子树
后序遍历:在后序遍历中,先递归使用后序遍历访问左子树和右子树,最后访问根节点
左子树->右子树->根节点
"""
二叉树
#coding:utf-8
class Node(object):
"""构造结点"""
def __init__(self, item):
self.elem = item
self.lchild = None
self.rchild = None
class Tree(object):
"""二叉树"""
def __init__(self):
self.root = None
def add(self, item):
node = Node(item)
if self.root is None:
self.root = node
return
queue = [self.root]
while queue:
cur_node = queue.pop(0)
if cur_node.lchild is None:
cur_node.lchild = node
return
else:
queue.append(cur_node.lchild)
if cur_node.rchild is None:
cur_node.rchild = node
return
else:
queue.append(cur_node.rchild)
def breadth_travel(self):
"""广度遍历"""
if self.root is None:
return
queue = [self.root]
while queue:
cur_node = queue.pop(0)
print(cur_node.elem, end=" ")
if cur_node.lchild is not None:
queue.append(cur_node.lchild)
if cur_node.rchild is not None:
queue.append(cur_node.rchild)
def preorder(self, node):
"""先序遍历"""
if node is None:
return
print(node.elem, end=" ")
self.preorder(node.lchild)
self.preorder(node.rchild)
def inorder(self, node):
"""中序遍历"""
if node is None:
return
self.inorder(node.lchild)
print(node.elem, end=" ")
self.inorder(node.rchild)
def postorder(self, node):
"""后序遍历"""
if node is None:
return
self.postorder(node.lchild)
self.postorder(node.rchild)
print(node.elem, end=" ")
if __name__ == '__main__':
tree = Tree()
tree.add(0)
tree.add(1)
tree.add(2)
tree.add(3)
tree.add(4)
tree.add(5)
tree.add(6)
tree.add(7)
tree.add(8)
tree.add(9)
tree.breadth_travel()
print(" ")
tree.preorder(tree.root)
print(" ")
tree.inorder(tree.root)
print(" ")
tree.postorder(tree.root)
print(" ")
二叉搜索树
左节点小于父亲节点,右节点大于父亲节点
class Node(object):
"""构造结点"""
def __init__(self, data):
self.data = data
self.lchild = None
self.rchild = None
self.parent = None
class BST(object):
"""二叉搜索树"""
def __init__(self, li=None):
self.root = None
if li:
for val in li:
self.insert_no_rec(val)
def insert(self, node, val):
#插入递归
if not node:
node = Node(val)
elif val < node.data:
node.lchild = self.insert(node.lchild, val)
node.lchild.parent = node
elif val > node.data:
node.rchild = self.insert(node.rchild, val)
node.rchild.parent = node
return node
def insert_no_rec(self, val):
#插入非递归
p = self.root
if not p: #空树
self.root = Node(val)
return
while True:
if val < p.data:
if p.lchild:
p = p.lchild
else: #左孩子不存在
p.lchild = Node(val)
p.lchild.parent = p
return
elif val > p.data:
if p.rchild:
p = p.rchild
else:
p.rchild = Node(val)
p.rchild.parent = p
return
else:
return
def query(self, node, val):
#查找递归
if not node:
return None
if node.data < val:
return self.query(node.rchild, val)
elif node.data > val:
return self.query(node.lchild, val)
else:
return node
def query_no_rec(self, val):
#查找非递归
p = self.root
while p:
if p.data < val:
p = p.rchild
elif p.data > val:
p = p.lchild
else:
return p
return None
def pre_order(self, root):
"""先序遍历"""
if root:
print(root.data, end=" ")
self.pre_order(root.lchild)
self.pre_order(root.rchild)
def in_order(self, root):
"""中序遍历"""
if root:
self.in_order(root.lchild)
print(root.data, end=" ")
self.in_order(root.rchild)
def post_order(self, root):
"""后序遍历"""
if root:
self.post_order(root.lchild)
self.post_order(root.rchild)
print(root.data, end=" ")
def __remove_node_1(self, node):
#情况一:node是叶子节点
if not node.parent:
self.root = None
if node == node.parent.lchild: #node是它父亲的左孩子
node.parent.lchild = None
else: #右孩子
node.parent.rchild = None
def __remove_node_21(self, node):
#情况2.1:node只有一个左孩子
if not node.parent: #根节点
self.root = node.lchild
node.lchild.parent = None
elif node == node.parent.lchild:
#node是parent的左孩子,且node只有一个左孩子
node.parent.lchild = node.lchild
node.lchild.parent = node.parent
else:#node是parent的右孩子,但是node只有一个左孩子
node.parent.rchild = node.lchild
node.lchild.parent = node.parent
def __remove_node_22(self, node):
#情况2.2:node只有一个右孩子
if not node.parent:
self.root = node.rchild
node.rchild.parent = None
elif node == node.parent.rchild:
#node是parent的右孩子,并且node只有一个右孩子
node.parent.rchild = node.rchild
node.rchild.parent = node.parent
else:#node是parent的左孩子,并且node只有一个右孩子
node.parent.lchild = node.rchild
node.rchild.parent = node.parent
def delete(self, val):
if self.root: #不是空树
node = self.query_no_rec(val)
if not node: #不存在
return False
if not node.lchild and not node.rchild:#1.叶子节点
self.__remove_node_1(node)
elif not node.rchild:#2.1只有一个左孩子
self.__remove_node_21(node)
elif not node.lchild:#2.2只有一个右孩子
self.__remove_node_22(node)
else:
#3.两个孩子都有
min_node = node.rchild
while min_node.lchild:
min_node = min_node.lchild
node.data = min_node.data
#删除min_node
if min_node.rchild:
self.__remove_node_22(min_node)
else:
self.__remove_node_1(min_node)
tree = BST([4, 6, 7, 9, 2, 1, 3, 5, 8])
tree.in_order(tree.root)
tree.delete(4)
print("")
tree.delete(1)
print("")
tree.in_order(tree.root)