ISODATA聚类算法

ISODATA聚类算法基于K均值,但增加了聚类合并和分裂操作,能够自动调整类别数。文章介绍了K均值算法的基本步骤和优缺点,随后详细阐述了ISODATA算法的流程,包括初始化、合并和分裂规则,并讨论了算法的优缺点,如参数设置的敏感性。

ISODATA聚类算法

一、 K均值算法

ISODATA算法是在k-均值算法的基础上,增加对聚类结果的“合并”和“分裂”两个操作

1、K均值算法概述

k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法

2、K均值算法步骤

步骤一:

预将数据分为K组,则随机选取K个对象作为初始的聚类中心。

步骤二:

计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。
可以根据实际需要选择一种距离作为相似性度量,其中最常用的是欧氏距离:X中的样本用d个描述属性A1,A2…Ad来表示,并且d个描述属性都是连续型属性。数据样本xi=(xi1,xi2,…xid), xj=(xj1,xj2,…xjd)其中,xi1,xi2,…xid和xj1,xj2,…xjd分别是样本xi和xj对应d个描述属性A1,A2,…Ad的具体取值。样本xi和xj之间的相似度通常用它们之间的距离d(xi,xj)来表示,距离越小,样本xi和xj越相似,差异度越小;距离越大,样本xi和xj越不相似,差异度越大。
请添加图片描述

步骤三:

每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。
各个聚类子集的均值代表点(也称聚类中心)分别为m1,m2,…,mk。

步骤四:

上述过程将不断重复直到满

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值