一、返回值的作用
1.1 return的作用
注意:return只能在函数体中使用
1)将数据作为函数的返回值返回
2)结束函数(执行函数体的时候如果遇到return,函数直接结束)
def func1():
print('+++++++')
return 100
print('-------')
print('=======')
print(func1()) # 100
def func2():
print('+++++++')
return
print('-------')
print('=======')
print(func2())
def func3(n):
# n = 5
for x in range(1, n):
if x % 3 == 0:
return x
print(f'x:{x}')
print(func3(5))
"""
x: 1
x: 2
x: 3
x:4
None
x:1
x:2
3
"""
二、变量作用域
2.1 变量作用域
变量作用域指的是变量定义完成后可以使用的有效范围。
根据变量变量作用域的不同,可以将变量分为全局变量和局部变量两种。
2.2 全局变量和局部变量
1)**全局变量 **
python中没有定义在函数中或者类中的变量默认都是全局变量。
作用域:从定义开始到程序结束
2)局部变量
定义在函数中的变量就是局部变量(形参也是局部变量)
作用域:从定义开始到函数结束
# ----------------------------------1)全局变量----------------------------------
# a是全局变量
a = 100
# x和b都是全局变量
for x in range(5):
b = 200
print(f'外面使用a:{a}')
print(f'外面使用x:{x}')
print(f'外面使用b:{b}')
for y in range(3):
print(f'循环里面a:{a}')
print(f'循环里面b:{b}')
print(f'循环里面x:{x}')
def fun1():
print(f'函数里面a:{a}')
print(f'函数里面b:{b}')
print(f'函数里面x:{x}')
fun1()
# ----------------------------------2)局部变量----------------------------------
# m 和 n 是局部变量
def func2(m):
n = 1000
print(f'函数里面m:{m}')
print(f'函数里面n:{n}')
func2(100)
# print(f'函数外面m:{m}')
# print(f'函数外面n:{n}')
2.3 全局变量和局部变量的存储原理
1)全局变量默认保存在全局栈区间,全局栈区间会在程序结束后自动释放。
2)调用函数的时候系统会自动为这个函数创建一个临时栈区间,用来保存在函数中产生的数据(局部变量就是保存在函数对应的临时栈区间中的),函数对应的临时栈区间会在函数调用结束的时候自动释放。
3)在函数中可以通过关键字global修改局部变量的保存方式,让局部变量保存在全局栈区间中。
name = '小明'
def func3():
# 在函数内部定义全局变量用global
global num
num = 10
# 在函数内部修改全局变量的值用global
global name
name = '小花'
func3()
print(num)
print(name)
三、匿名函数
3.1 匿名函数 - 没有名字的函数
函数名 = lambda 形参列表:返回值
相当于:
def 函数名(形参列表):
return 返回值
注意:
1)匿名函数的形参至少一个
2)匿名函数的调用和普通函数一样
3)无默认值的类型说明在匿名函数中不能用
# 案例:定义一个匿名函数,求任意两个数的和
sum_2 = lambda num1=1, num2=2: num1 + num2
result = sum_2(100, 200)
print(result)
result = sum_2(num1=10, num2=20)
print(result)
result = sum_2()
print(result)
# 练习:定义一个匿名函数,判断指定的年是否是闰年
is_leap_year = lambda year: year % 4 == 0 and year % 100 != 0 or year % 400 == 0
print(is_leap_year(2000))
print(is_leap_year(2001))
四、实参高阶函数
函数的参数是函数的函数就是实参高阶函数
给参数是函数的参数传参:a.使用普通函数函数名;b.使用匿名函数
重点:掌握系统或者第三方库提供的实参高阶函数的用法
常见的实参高阶:max、min、sorted、列表.sort、map、reduce
def func1(x):
print(x)
func1(10)
func1('abc')
func1([10, 20])
func1({'a': 10})
def func2(x):
print(x * 2)
func2(10)
func2(1.23)
func2('abc')
func2([10, 20])
func2((100, 200))
def func3(x):
print(x + 10)
func3(100)
func3(1.23)
func3(True)
def func4(x):
print(x[1])
func4('abc')
func4([10, 20])
func4({1: 100, 'a': 200})
def func5(x):
print(x.split('+'))
func5('abc')
# func6就是一个实参高阶函数
def func6(x):
# x = t
x() # t()
def t():
print('t函数')
func6(t)
# func7是实参高阶函数
def func7(x):
# x = t2
# x = lambda n1, n2: n1 + n2
print(x(10, 20) + 30)
# print(t2(10, 20) + 30) print(200 + 30)
# print(30 + 30)
def t2(n1, n2):
# n1 = 10, n2 = 20
return n1 * n2 # return 200
func7(t2)
func7(lambda n1, n2: n1 + n2)
五、常见的实参高阶函数
5.1 max、min、sorted、列表.sort
"""
1) max(序列) - 直接比较序列中元素的大小求最大值
2) max(序列, key=函数) - 按照函数制定的规则比较序列中元素的大小获取最大值
函数的要求:(可以是匿名函数也可以是普通函数,优先考虑匿名函数)
a. 有且只有一个参数(这个参数代表序列中的每个元素)
b. 有一个返回值(返回值就是比较对象)
"""
nums = [83, 67, 19, 22, 80, 77, 93]
print(max(nums))
# 案例:求个位数最大的元素
nums = [83, 67, 19, 22, 80, 77, 93]
result = max(nums, key=lambda item: item % 10)
print(result) # 19
# 案例:求nums中绝对值最大的元素
nums = [8, -283, 89, 100, 82, -34]
result = max(nums, key=lambda item: item ** 2)
print(result) # -283
# 案例:求students中分数最高的学生
students = [
{'name': 'stu1', 'age': 18, 'score': 90},
{'name': 'stu2', 'age': 22, 'score': 98},
{'name': 'stu3', 'age': 25, 'score': 78},
{'name': 'stu4', 'age': 19, 'score': 81},
{'name': 'stu5', 'age': 20, 'score': 92}
]
result = max(students, key=lambda item: item['score'])
print(result)
# 案例:按照分数的高低对学生从大到小排序
result = sorted(students, key=lambda item: item['score'], reverse=True)
print(result)
# 练习1:求list1中长度最长的字符串
list1 = ['你好', 'hello', 'how are you', 'thank you! and you?', '好好学习,天天向上']
result = max(list1, key=lambda item: len(item))
print(result)
# 练习2:求nums中十位数最小的元素
nums = [92, 129, 37, 99, 150, 501]
result = min(nums, key=lambda item: item // 10 % 10)
print(result)
# 练习3:将所有的学生按照年龄值从小到大排序
students = [
{'name': 'stu1', 'age': 18, 'score': 90},
{'name': 'stu2', 'age': 22, 'score': 98},
{'name': 'stu3', 'age': 25, 'score': 78},
{'name': 'stu4', 'age': 19, 'score': 81},
{'name': 'stu5', 'age': 20, 'score': 92}
]
students.sort(key=lambda item: item['age'])
print(students)
# 练习4:求nums中各个位之和最大的元素
nums = [123, 78, 90, 201, 192, 330]
# 123 -> 1 + 2 + 3
# '123' -> '1'、'2'、'3', [1, 2, 3]
# 方法1:
result = max(nums, key=lambda item: sum([int(x) for x in str(item)]))
print(result)
# 方法2:
# 123 -> eval('1+2+3')
# 123 -> '123' -> '+'.join('123') -> '1+2+3'
result = max(nums, key=lambda item: eval('+'.join(str(item))))
print(result)
# 方法3:
def t(item):
sum1 = 0
for x in str(item):
sum1 += int(x)
return sum1
result = max(nums, key=t)
print(result)
5.2 map - 基于原序列中的元素创建一个新的序列
"""
1)map(函数, 序列) - 通过函数描述的规则基于序列中的元素创建一个新的序列
函数要求:
a. 有且只有一个参数(代表后面的这个序列中每个元素)
b. 有一个返回值(返回值就是新序列中元素)
2)map(函数, 序列1, 序列2)
函数要求:
a. 有且只有2个参数(分别代表后面的两个序列中每个元素)
b. 有一个返回值(返回值就是新序列中元素)
2)map(函数, 序列1, 序列2, 序列3,...)
"""
# 案例1:将nums中所有的元素乘以10
nums = [19, 870, 34, 61, 78]
result = map(lambda item: item*10, nums)
print(list(result)) # [190, 8700, 340, 610, 780]
# 案例2:获取nums中所有元素的个位数
result = map(lambda item: item % 10, nums)
print(list(result)) # [9, 0, 4, 1, 8]
# 案例2:将nums1和nums2中相同位置上的元素相乘,得到一个新的序列
nums1 = [10, 20, 30, 10]
nums2 = [23, 30, 20, 55]
result = map(lambda i1, i2: i1 * i2, nums1, nums2)
print(list(result)) # # [230, 600, 600, 550]
# 练习1:获取names中每个人的姓
names = ['何晓东', '张三', '李四', '王五', '王二', '赵六']
result = map(lambda item: item[0], names)
print(list(result))
# 练习2:
students = [
{'name': 'stu1', 'age': 18, 'score': 90},
{'name': 'stu2', 'age': 22, 'score': 98},
{'name': 'stu3', 'age': 25, 'score': 78},
{'name': 'stu4', 'age': 19, 'score': 81},
{'name': 'stu5', 'age': 20, 'score': 92}
]
subjects = ['电子信息', '金融数学', '园林设计', '经济', '计算机软件']
# ['电子信息-stu1', '金融数学-stu2',....]
result = map(lambda i1, i2: f'{i2}-{i1["name"]}', students, subjects)
print(list(result))
5.3 reduce - 将序列中元素合并成一个数据(基于原序列中所有的元素得到一个数据)
"""
reduce(函数, 序列, 初始值) - 按照函数制定的规则将序列中的元素合并成一个数据
函数的要求:
a. 有且只有两个参数(第一个参数指向初始值,第二个参数代表序列中的每个元素)
b. 需要一个返回值 (返回值就是合并规则)
初始值: 累积求数值和,初始值是0
累积求数值乘积,初始值是1
字符串合并,初始值是空串
"""
from functools import reduce
nums = [12, 301, 40, 55, 112]
# 案例1:12 + 301 + 40 + 55 + 112 的结果
# 0 + 12 + 301 + 40 + ... + 112
result = reduce(lambda x, item: x + item, nums, 0)
print(result)
# 案例:12 * 301 * 40 * 55 * 112 的结果
# 1 * 12 * 301 * ... * 112
result = reduce(lambda x, item: x * item, nums, 1)
print(result)
# 案例:123014055112 -> '123014055112'
# '' + '12' + '301' + '40' + ... + '112'
# '' + str(12) + str(301) +... + str(112)
result = reduce(lambda x, item: x + str(item), nums, '')
print(result) # '123014055112'
# 练习:2+1+0+5+2
nums = [12, 301, 40, 55, 112]
# 0 + 2 + 1 + 0 + 5 + 2
# 0 + 12 % 10 + 301 % 10 + ... + 112 % 10
result = reduce(lambda x, item: x + item % 10, nums, 0)
print(result)
六、迭代器
6.1 什么是迭代器(iter)
1)迭代器是容器型数据类型(可以遍历,也转换成列表),无法直接提供一个迭代器,只能将其他序列转换成迭代器。
2)特点:
a.打印迭代器的时候无法查看到元素有哪些
b.无法通过len获取迭代器中元素的个数
c.如果要使用迭代器中的元素必须将元素从迭代器中取出来(取走),取走的元素会从迭代器中永远消失(用一个就少一个)
3)任何数据都可以作为迭代器的元素
# 1)创建迭代器
i1 = iter('abc')
i2 = iter([10, 20, 30, 40])
i3 = iter((10, 1.23, 'abc', True, [10, 20]))
# 2)打印迭代器无法查看元素
print(i1)
print(i2)
# 3)迭代器无法统计个数
# print(len(i1)) # 报错!
6.2 获取迭代器中的元素
无论以任何方式获取到了迭代器中的某个元素,那么这个元素一定会从迭代器中消失。
'''
1)获取单个元素:
next(迭代器) - 获取迭代器最前面的元素
2) 遍历迭代器
for 变量 in 迭代器:
循环体
'''
print(next(i1)) # 'a'
print(next(i1)) # 'b'
print(next(i1)) # 'c'
# print(next(i1)) # 报错!
print(next(i2)) # 10
print(list(i2)) # [20, 30, 40]
# print(next(i2)) # 报错!
for x in i3:
print(x)
print(list(i3)) # []