目录
1.每日一句
玫瑰与晚霞共绘浪漫,你是我心里的爱意泛滥
2.作者简介
🏡个人主页:XiaoXiaoChen-2716
📚学习专栏:力扣专栏
🕒发布日期:2022/11/8
『LeetCode|每日一题』粉刷房子
1.每日一题
2.解题思路
2.1 思路分析
此题提到相邻的房子不能粉刷同样的颜色,所以是一个经典的动态规划题
S1:首先需要定义一个dp数组,我把它定义为二维的,dp[i][j]表示从第0号到第i号房子同时第j号房子被粉刷j号颜色的最小花费;
S2:第二步就需要初始化dp数组,只需要初始化第0号房子的费用即可,很容易理解dp[0][i] = costs[0][i];
S3:接下来就是利用状态转化公式,由于相邻两间房的颜色不能相同,也就可以这么写: dp[i][0] = Math.min(dp[i - 1][1] , dp[i - 1][2]) + costs[i][0];
dp[i][1] = Math.min(dp[i - 1][0] , dp[i - 1][2]) + costs[i][1];
dp[i][2] = Math.min(dp[i - 1][0] , dp[i - 1][1]) + costs[i][2];
拿第一行代码来解释,第i号放间如果是0号颜色,那么它的价格就要用第i-1号房间的1号或者2号颜色才符合题目要求;
S4:最后看从0号房间到len-1号房间且第len-1号房间上什么颜色的费用最少,就选择那种方式
2.2 核心代码
for(int i = 1 ; i < len ; i++){
dp[i][0] = Math.min(dp[i - 1][1] , dp[i - 1][2]) + costs[i][0];
dp[i][1] = Math.min(dp[i - 1][0] , dp[i - 1][2]) + costs[i][1];
dp[i][2] = Math.min(dp[i - 1][0] , dp[i - 1][1]) + costs[i][2];
}
2.3 完整代码
class Solution {
public int minCost(int[][] costs) {
int len = costs.length;
int[][] dp = new int[len + 1][3];
//初始化
for(int i = 0 ; i < 3 ; i++){
dp[0][i] = costs[0][i];
}
for(int i = 1 ; i < len ; i++){
dp[i][0] = Math.min(dp[i - 1][1] , dp[i - 1][2]) + costs[i][0];
dp[i][1] = Math.min(dp[i - 1][0] , dp[i - 1][2]) + costs[i][1];
dp[i][2] = Math.min(dp[i - 1][0] , dp[i - 1][1]) + costs[i][2];
}
return Math.min(Math.min(dp[len - 1][0] , dp[len - 1][1]) , dp[len - 1][2]);
}
}
2.4 运行结果
🍁 类似题目推荐:
如果文章对各位大佬有帮助就支持一下噢,不好的地方请各位大佬多多指教!