经典算法之滑动窗口-暴力解法+单调队列解法

作用:通常求最大(小)子数组/子序列/值

package com.xch.niuke;

import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;

/**
 * 滑动窗口
 *
 * @author XuChenghe
 * @date 2023/8/27 12:18
 */
public class Main001 {
    
    public static void main(String[] args) {
        // 最小值暴力解法
        int[] res1 = f1(new int[]{3, 1, 4, 5, 2, 6, 7}, 3);
        System.out.println(Arrays.toString(res1));
        // 最大值暴力解法
        int[] res2 = f2(new int[]{3, 1, 4, 5, 2, 6, 7}, 3);
        System.out.println(Arrays.toString(res2));
        
        // 最小值单调队列(递增)解法
        int[] res3 = f3(new int[]{3, 1, 4, 5, 2, 6, 7}, 3);
        System.out.println(Arrays.toString(res3));
        // 最大值单调队列(递减)解法
        int[] res4 = f4(new int[]{3, 1, 4, 5, 2, 6, 7}, 3);
        System.out.println(Arrays.toString(res4));
    }
    
    /**
     * 最小值暴力解法
     *
     * @param nums
     * @param k
     * @return
     */
    public static int[] f1(int[] nums, int k) {
        int[] res = new int[nums.length - k + 1];
        for (int i = k - 1; i < nums.length; i++) {
            res[i - k + 1] = nums[i];
            for (int j = i; j > i - k; j--) {
                if (nums[j] < res[i - k + 1]) {
                    res[i - k + 1] = nums[j];
                }
            }
        }
        return res;
    }
    
    /**
     * 最大值暴力解法
     *
     * @param nums
     * @param k
     * @return
     */
    public static int[] f2(int[] nums, int k) {
        int[] res = new int[nums.length - k + 1];
        for (int i = k - 1; i < nums.length; i++) {
            res[i - k + 1] = nums[i];
            for (int j = i; j > i - k; j--) {
                if (nums[j] > res[i - k + 1]) {
                    res[i - k + 1] = nums[j];
                }
            }
        }
        return res;
    }
    
    /**
     * 最小值单调队列(递增)解法
     *
     * @param nums
     * @param k
     * @return
     */
    public static int[] f3(int[] nums, int k) {
        List<Integer> list = new LinkedList<>();// 用List集合模拟Queue队列
        int[] res = new int[nums.length - k + 1];
        for (int i = 0; i < nums.length; i++) {
            if (i < k - 1) {
                putAndPop3(null, list, nums[i]);
            } else if (i == k - 1) {
                putAndPop3(null, list, nums[i]);
                res[i - k + 1] = list.get(0);
            } else {
                putAndPop3(nums[i - k], list, nums[i]);
                res[i - k + 1] = list.get(0);
            }
        }
        return res;
    }
    
    /**
     * 维护单调队列(递增)
     *
     * @param head
     * @param list
     * @param num
     */
    public static void putAndPop3(Integer head, List<Integer> list, int num) {
        if (head != null && list.get(0) == head) {
            list.remove(0);
        }
        for (int i = list.size() - 1; i >= 0; i--) {
            if (list.get(i) > num) {// 注意相同的不要清除,否则有异常:-3, 4, 5, 8, 0, -1, 0, 1, 2, 0, 3, 4
                list.remove(i);
            } else {
                break;
            }
        }
        list.add(num);
    }
    
    /**
     * 最大值单调队列(递减)解法
     *
     * @param nums
     * @param k
     * @return
     */
    public static int[] f4(int[] nums, int k) {
        List<Integer> list = new LinkedList<>();// 用List集合模拟Queue队列
        int[] res = new int[nums.length - k + 1];
        for (int i = 0; i < nums.length; i++) {
            if (i < k - 1) {
                putAndPop4(null, list, nums[i]);
            } else if (i == k - 1) {
                putAndPop4(null, list, nums[i]);
                res[i - k + 1] = list.get(0);
            } else {
                putAndPop4(nums[i - k], list, nums[i]);
                res[i - k + 1] = list.get(0);
            }
        }
        return res;
    }
    
    /**
     * 维护单调队列(递减)
     *
     * @param head
     * @param list
     * @param num
     */
    public static void putAndPop4(Integer head, List<Integer> list, int num) {
        if (head != null && list.get(0) == head) {
            list.remove(0);
        }
        for (int i = list.size() - 1; i >= 0; i--) {
            if (list.get(i) < num) {// 注意相同的不要清除,否则有异常
                list.remove(i);
            } else {
                break;
            }
        }
        list.add(num);
    }
    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BB-X

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值