计算方法()

第一节:

非线性方程和方程组的数值解法

求根步骤:

二分法:

 

迭代法: 

收敛性、收敛速度:

计算效率:

 收敛阶,即一次计算能收敛到上一次的p次方。 


单点迭代法:

单点迭代法的收敛阶: 

注意:这里P至少是2,因此不可以通过这个定理的出“至少是线性收敛”之类的结论。 


牛顿迭代法:

牛顿法的局部收敛性:

牛顿法的改进:

牛顿下山法:


多点迭代法:

局部收敛性和收敛速度:


重根迭代法:



第二节:

线性方程组解法

基本解法:

向量范数:

常用的向量范数:


矩阵范数:

 常用的矩阵范数:

 谱半径:


 高斯消元法: 

 类似的消元法:Gauss-Jordan消元法

列选主元(素)消元法:

全主元素消元法:



第三节:

P为进行行变换的单位阵。


Doolittle分解:

推导公式:

注意:先求U行,再求L列。

求解实例:


 Crout分解:(与Doolittle分解对称)

求解实例:


Cholesky分解(平方根法):

 推导过程:

 改进的Cholesky分解方法: 


追赶法:

使用追赶法的条件:

即中间元素大于两边元素绝对值和。

过程:

 实质是高斯消去法应用于三对角方程。


误差分析:

A的条件数 cond(A) :

判断矩阵是否病态:



第四节:

线性方程组的迭代解法:

迭代公式有效条件:

(1)收敛性:

(2)相容性:


Jacobi迭代:

Gauss - Seidel迭代:

注意:以上两种方法存在收敛性问题:

超松弛迭代法(SOR方法): 


迭代收敛的其他判别方法:



第五节:

插值法:


Lagrange插值公式: 

 常用公式:

 截断误差:


等距节点公式:

性质:

差分在牛顿公式中的引用:


由于单一公式带来的不稳定性,引入分段插值:



 第六节:

最佳平方逼近:


常见的正交多项式:

勒让德(Legendre)多项式:

切比雪夫(Chebyshev)多项式:

判断函数族线性无关:


最佳平方逼近问题解法:

法方程组:


正交基底的用途——正交多项式族做平方逼近:

当区间为[-1, 1]时:


曲线拟合的最小二乘逼近:

最小二乘拟合多项式: 使用实例:



第七节:

数值积分求法思想:

代数精度与插值型求积公式:

求积公式的构造:

余项(误差):

求法实例:


等距节点的Newton-Cotes公式:

求法与余项(误差):

求法实例:

稳定性:余项求法:

复化的Newton-Cotes 公式:



第八节:

常微分方程初值问题:


常用解法:

离散化方法:

 实质:

 相当于泰勒展开只展开了一项,简便的同时误差会扩大。


线性多步法:

泰勒展开思路:

相容:

待定系数法:r(也就是你要通过这个方法计算多高次数的方程)会影响到底有没有解。超过2p+2了就没有,等于2p+2就有一个,小于2p+2就可以有多个解,系数更加自由。


线性多步法的收敛性:

特征多项式:

根条件:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值