第一节:
非线性方程和方程组的数值解法
求根步骤:
二分法:
迭代法:
收敛性、收敛速度:
计算效率:
收敛阶,即一次计算能收敛到上一次的p次方。
单点迭代法:
单点迭代法的收敛阶:
注意:这里P至少是2,因此不可以通过这个定理的出“至少是线性收敛”之类的结论。
牛顿迭代法:
牛顿法的局部收敛性:
牛顿法的改进:
牛顿下山法:
多点迭代法:
局部收敛性和收敛速度:
重根迭代法:
第二节:
线性方程组解法
基本解法:
向量范数:
常用的向量范数:
矩阵范数:
常用的矩阵范数:
谱半径:
高斯消元法:
类似的消元法:Gauss-Jordan消元法
列选主元(素)消元法:
全主元素消元法:
第三节:
P为进行行变换的单位阵。
Doolittle分解:
推导公式:
注意:先求U行,再求L列。
求解实例:
Crout分解:(与Doolittle分解对称)
求解实例:
Cholesky分解(平方根法):
推导过程:
改进的Cholesky分解方法:
追赶法:
使用追赶法的条件:
即中间元素大于两边元素绝对值和。
过程:
实质是高斯消去法应用于三对角方程。
误差分析:
A的条件数 cond(A) :
判断矩阵是否病态:
第四节:
线性方程组的迭代解法:
迭代公式有效条件:
(1)收敛性:
(2)相容性:
Jacobi迭代:
Gauss - Seidel迭代:
注意:以上两种方法存在收敛性问题:
超松弛迭代法(SOR方法):
迭代收敛的其他判别方法:
第五节:
插值法:
Lagrange插值公式:
常用公式:
截断误差:
等距节点公式:
性质:
差分在牛顿公式中的引用:
由于单一公式带来的不稳定性,引入分段插值:
第六节:
最佳平方逼近:
常见的正交多项式:
勒让德(Legendre)多项式:
切比雪夫(Chebyshev)多项式:
判断函数族线性无关:
最佳平方逼近问题解法:
法方程组:
正交基底的用途——正交多项式族做平方逼近:
当区间为[-1, 1]时:
曲线拟合的最小二乘逼近:
最小二乘拟合多项式: 使用实例:
第七节:
数值积分求法思想:
代数精度与插值型求积公式:
求积公式的构造:
余项(误差):
求法实例:
等距节点的Newton-Cotes公式:
求法与余项(误差):
求法实例:
稳定性:余项求法:
复化的Newton-Cotes 公式:
第八节:
常微分方程初值问题:
常用解法:
离散化方法:
实质:
相当于泰勒展开只展开了一项,简便的同时误差会扩大。
线性多步法:
泰勒展开思路:
相容:
待定系数法:r(也就是你要通过这个方法计算多高次数的方程)会影响到底有没有解。超过2p+2了就没有,等于2p+2就有一个,小于2p+2就可以有多个解,系数更加自由。
线性多步法的收敛性:
特征多项式:
根条件: