自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(143)
  • 收藏
  • 关注

原创 【基于AI-有限元融合的复合材料多尺度建模与性能预测前沿技术】

☆ 构建二维结构的特征处理及预测网络(CNN—ResNet/DenseNet)+多模态学习预测。1.2.基于卷积神经网络(CNN)的跨尺度特征提取网络(ResNet/DenseNet)1.1.多相复合材料界面(纤维/基质界面)理论机理(Cohesive模型)1.4.纤维复合材料的损伤理论(Tsai-Wu准则、Hashin准则)☆ ABAQUS/Python脚本交互(基于论文中RVE建模案例)1.4.三维结构(多相复合材料/单相多孔材料)的特征处理及预测方法。

2025-12-15 15:27:19 419

原创 计算化学与人工智能驱动的MOFs性能预测与筛选技术

金属有机框架(MOFs)因其高孔隙率、可调结构和多功能性,在气体存储、分离和催化等领域具有广泛应用。计算化学与人工智能(AI)的结合显著加速了MOFs的性能预测与筛选流程,降低了实验试错成本。

2025-12-09 14:21:38 239

原创 【人工智能与数据驱动方法加速金属材料设计与应用】

人工智能通过机器学习和深度学习算法,能够快速分析大量材料数据,预测材料性能。机器学习模型如随机森林、支持向量机等被用于预测材料的力学性能、热学性能和电学性能。高通量计算和实验技术产生了海量材料数据,数据驱动方法利用这些数据加速新材料发现。材料基因组计划通过整合计算、实验和数据库,大幅缩短新材料研发周期。数据挖掘技术从已有材料数据库中提取潜在规律,指导新材料设计。机器人实验平台与人工智能算法结合,实现了材料合成与表征的自动化闭环优化。将人工智能与多尺度建模相结合,能够跨越从原子尺度到宏观尺度的材料性能预测。

2025-12-09 14:10:52 393

原创 【机器学习驱动的智能化电池管理技术与应用】

深度技术融合,聚焦前沿应用:☆ 核心特色在于将机器学习(ML)与人工智能(AI)技术(SVM, BP/CNN/LSTM, 迁移学习, SVR, KMeans, DBSCAN, LOF, 深度学习)深度、系统地应用于电池管理(BMS)的核心痛点问题:SOC估计、SOH估计、剩余寿命预测(RUL)、热失控预警。☆ 在每个应用领域内,通常遵循 “概述->传统/基础方法->先进/复杂方法(深度学习、迁移学习、联合预测)->实例验证” 的递进结构,便于学员逐步深入。

2025-12-02 10:59:47 265

原创 【机器学习赋能的智能光子学器件系统研究与应用】

例如,深度学习模型已被用于设计超构表面、光子晶体和集成光路,显著缩短设计周期。神经网络可以校准单光子源的工作参数,优化纠缠光子对的产生效率。基于历史数据的机器学习模型能够预测器件在不同工作条件下的性能变化。研发专用的光电计算芯片,将部分机器学习任务卸载到硬件层面,满足低延迟要求。建立统一的测试基准和评估指标,便于不同研究方法间的比较。该领域的发展将继续受益于算法创新和光子技术进步的双重驱动,为下一代智能光学系统奠定基础。机器学习与光子学的交叉研究正在快速发展,尤其在器件设计、制造和应用方面取得了显著进展。

2025-11-20 13:57:24 659

原创 【机器学习在智能水泥基复合材料中的应用领域】

结合传感器数据,利用深度学习(如卷积神经网络)识别裂缝位置和程度,触发嵌入修复剂的微胶囊响应。大规模时序数据适合LSTM。通过贝叶斯优化调整水灰比和纤维掺量,使复合材料28天抗压强度提升18%,实验次数减少70%。:通过监督学习算法(如随机森林、支持向量机)预测抗压强度、耐久性等力学性能,减少实验成本。:采用强化学习或生成对抗网络(GAN)探索新型配方组合,加速高性能材料的开发周期。(注:以上代码仅为示例,实际应用需根据数据特征调整参数。:高质量标注数据不足,需结合迁移学习或合成数据增强。

2025-11-20 13:42:49 529

原创 【被仿真算到崩溃?这份“AI+可靠性”实战课可能是你的救命稻草】

如果你也在这条路上摸索过,最近我挖到一个挺硬核的专题课——《基于AI智能算法的装备结构可靠性分析与优化设计技术》,干货密度很高,值得专门写一篇来聊聊。如果你负责研发流程搭建或技术选型,课程中关于“数字孪生+可靠性”的技术路线和实现方法,能为团队引入AI驱动的研发模式提供具体参考。如果你在做结构设计、可靠性测试、故障诊断,经常面临“精度与效率”的权衡,这里的代理模型和主动抽样策略能直接提升你的工作效率。最重要的是——掌握的方法能直接用在项目上,省下的仿真时间和提升的设计精度,远超过学费本身。

2025-11-13 15:18:50 339

原创 【光学神经网络与人工智能应用专题】

2.光计算加速机制:基于光学矩阵- 向量乘法器的深度神经网络,为 AI 算法提供了超高速、低能耗的硬件支撑,推动神经网络协处理器走向实用化。1.光学神经网络架构创新:从空间光衍射神经网络的并行计算优势,到片上集成网络的微型化突破,实现了从宏观到微观尺度的算力升级。3.超构材料与逆向设计:通过智能算法逆向设计的超构神经网络,突破了传统光学器件的功能局限,实现了光场调控与信息处理的一体化。5.非线性光学突破:光学非线性激活函数的突破,解决了光计算中关键的非线性操作瓶颈,完善了光学神经网络的功能闭环。

2025-11-11 14:15:01 501

原创 声学超材料与AI驱动的声振仿真优化设计

声学超材料是一种人工设计的复合材料,通过特殊的结构或排列方式实现对声波的调控。其核心特性包括负折射、声隐身、超常吸声等,突破传统材料的物理限制。采用贝叶斯优化自动调整结构参数(如单元尺寸、空腔形状),以目标频段的传输损失或吸收系数为优化指标。6.2.梯度超表面的设计维度:介绍如何通过调控单元的形状、取向或尺寸梯度来实现对波前的特定调控。目标:掌握AI驱动优化全流程,定义设计变量、优化目标(轻量化、减振)与约束条件。----AI驱动,COMSOL赋能:探索声学超材料设计与优化的新一代范式。

2025-11-10 16:24:31 985

原创 【FDTD与Python联合仿真的超表面智能设计技术】

FDTD(时域有限差分法)是一种广泛应用于电磁场仿真的数值方法,适用于超表面结构的模拟。结合Python的自动化与优化能力,可以实现高效智能设计。利用Lumerical FDTD等工具提供的API接口(如lumapi),通过Python脚本控制仿真流程。Python调用FDTD软件完成结构参数设置、网格划分、光源定义及结果提取。自动化优化中常用遗传算法、粒子群算法等智能算法,通过Python编写优化逻辑。目标函数基于FDTD仿真结果(如透射率、相位分布),实现超表面单元结构的参数优化。

2025-11-10 13:53:51 320

原创 智能光子学器件系统研究与应用

智能光子学器件系统结合了光子学技术与机器学习算法,通过数据驱动方式优化器件设计、性能调控和实际应用。该领域涵盖光子晶体、超表面、光纤传感器等器件的智能化升级,广泛应用于通信、成像、传感和量子技术。

2025-11-06 15:16:48 422

原创 【智能光学计算成像技术与应用】

智能光学计算成像技术融合了光学成像与人工智能算法,通过计算重构、优化和增强成像质量。该技术突破了传统光学成像的物理限制,在超分辨率、低光照成像、三维重建等领域具有广泛应用。

2025-11-06 15:10:23 949

原创 【Light|顶刊前言】北大团队突破组织成像极限:C²SD-ISM实现180μm深度超分辨成像

真实图像(GT)、宽场(无SD)与共聚焦(有SD)模拟图像,以及采用DPA-PR算法(WF-DPA-PR和SD-DPA-PR)对应的超分辨率重建结果。h高散射小鼠肾脏切片在宽场、共聚焦和SD-DPA-PR下的成像效果。近日,一项发表于《Light: Science & Applications》的研究提出了一种全新的成像系统——C²SD-ISM(双共聚焦转盘图像扫描显微镜),成功实现了144纳米横向分辨率与351纳米轴向分辨率,并在180微米深度下仍保持高保真成像,为深组织超分辨成像提供了全新解决方案。

2025-11-05 13:52:30 974

原创 【数据驱动智能故障诊断技术应用与实践】

数据驱动智能故障诊断技术基于机器学习、深度学习等方法,通过分析设备运行数据(如振动、温度、电流等)识别异常模式,实现故障预测与诊断。相较于传统基于物理模型的方法,该技术更适用于复杂系统,且能自适应数据变化。

2025-11-05 13:34:55 831

原创 【FDTD与Python联合仿真的超表面智能设计技术与应用专题】

超表面(Metasurface)是一种人工设计的二维结构,能够调控电磁波的相位、振幅和偏振等特性。时域有限差分法(FDTD)是模拟电磁场分布的经典数值方法,而Python凭借其丰富的科学计算库(如NumPy、SciPy)和机器学习框架(如TensorFlow、PyTorch),为超表面的智能设计提供了高效工具。两者的联合仿真可实现从结构优化到性能验证的全流程自动化。

2025-11-04 14:49:35 830

原创 基于AI智能算法的装备结构可靠性分析与优化设计技术

从事结构设计、可靠性分析、仿真优化的工程技术人员、机械工程、航空宇航、可靠性工程、优化算法等研究领域的高校研究生、从事高端装备系统设计与可靠性评估的科研人员、负责产品研发流程、可靠性保障与多学科协同优化的管理人员等。国家需求层面,我国《“十四五”智能制造发展规划》提出了“大力发展智能制造装备重要任务,主要包括基础零部件和装置、通用智能制造装备、专用智能制造装备以及融合了数字孪生、人工智能等新技术的新型智能制造装备”。Case 1:疲劳可靠性评估与P-S-N曲线拟合(高周疲劳试验数据处理,概率寿命预测)

2025-10-28 14:30:32 1091

原创 数据驱动智能故障诊断技术应用与实践

并进一步围绕 “跨域、可解释与物理融合诊断前沿” 展开未来趋势讨论,既总结当前旋转机械故障诊断领域的核心研究方向,为学员后续的论文选题提供贴合领域发展的启发,形成 “理论学习 - 实践验证 - 方向探索” 的完整教学链条。以深度学习、迁移学习和物理信息神经网络为代表的新一代AI技术,正通过数据驱动与物理机理的深度融合,推动诊断范式实现从“信号感知”到“特征认知”、从“故障识别”到“寿命预测”的跨越。二、基于集成学习的多工况轴承故障识别性能对比研究 —— 基于预测性维护的FD 模型的特征重要性。

2025-10-28 13:59:24 588

原创 【机器学习在智能水泥基复合材料中的应用与实践】

2025-10-20 10:53:21 356

原创 “COMSOL+MATLAB光子学仿真:从入门到精通,掌握多物理场建模

COMSOL Multiphysics是一款多物理场仿真软件,擅长处理电磁、光学、热力学等耦合问题。MATLAB在数值计算和算法开发方面具有优势,两者结合可实现复杂光子学系统的建模与自动化分析。:实现COMSOL模型与MATLAB脚本的双向交互。参数化扫描:通过MATLAB批量修改COMSOL参数并分析结果。自定义方程:在COMSOL中调用MATLAB函数定义复杂材料特性或边界条件。

2025-10-14 15:21:28 782

原创 智能光学计算成像技术与应用

智能光学计算成像技术结合光学系统设计、计算成像算法和人工智能(AI),通过优化光场信息采集与处理,突破传统成像在分辨率、视场、景深等方面的限制。该技术广泛应用于医学影像、遥感探测、自动驾驶等领域。

2025-10-11 14:32:47 914

原创 【机器学习赋能的智能光子学器件系统研究与应用】

利用深度学习模型如生成对抗网络(GAN)或变分自编码器(VAE)生成满足特定光学特性的光子结构。例如,纳米光子器件的拓扑优化可以通过神经网络实现,比传统迭代方法快几个数量级。:卷积神经网络(CNN)或图神经网络(GNN)可用于预测光子晶体或超表面的光学响应,如透射谱、反射谱或场分布。:强化学习(RL)适用于动态调控光子器件参数(如电压、温度),以实现自适应光学系统。:结合光子学传感器与机器学习,实现高灵敏度、高选择性的化学或生物分子检测。通过数据驱动的方法,可以显著提升光子学器件的效率和功能。

2025-10-11 14:27:48 365

原创 【光学神经网络与人工智能应用专题】

2.光计算加速机制:基于光学矩阵- 向量乘法器的深度神经网络,为 AI 算法提供了超高速、低能耗的硬件支撑,推动神经网络协处理器走向实用化。1.光学神经网络架构创新:从空间光衍射神经网络的并行计算优势,到片上集成网络的微型化突破,实现了从宏观到微观尺度的算力升级。3.超构材料与逆向设计:通过智能算法逆向设计的超构神经网络,突破了传统光学器件的功能局限,实现了光场调控与信息处理的一体化。5.非线性光学突破:光学非线性激活函数的突破,解决了光计算中关键的非线性操作瓶颈,完善了光学神经网络的功能闭环。

2025-10-09 13:58:47 314

原创 【基于AI-有限元融合的复合材料多尺度建模与性能预测前沿技术】

4、“物理+数据”双引擎驱动:突破纯数据驱动模型的“黑箱”局限,将Hashin准则、周期性边界条件等物理规则嵌入神经网络(如PINN),提升模型可解释性与外推能力。1、多尺度建模技术融合:不仅涵盖了复合材料从微观到宏观的多尺度建模理论,还特别强调了有限元方法与神经网络建模的融合,提供了全面的视角来理解建模中的多尺度问题。3、技术深度与广度:从复合材料均质化理论和有限元建模开始,到更高级的神经网络建模、深度学习和迁移学习,逐步深入,确保学员能够掌握不同复杂度的技术。

2025-09-29 13:59:54 225

原创 【Nature 子刊突破:可抗 350℃高温!新型数字伪装设备实现光 - 热红外 - 太赫兹 - 微波协同隐身】

答案:核心突破点在于实现了 “空间特征 - 高光谱 - 多波段强度” 的三维整合与超宽带覆盖: 维度拓展:传统伪装多聚焦于可见光 / 红外的颜色或强度模拟,而该策略首次将 光学高光谱伪装(0.4-2.5 μm,模拟植被光谱指纹)与热红外 - 太赫兹 - 微波三波段强度伪装结合,覆盖超 80% 的典型大气窗口;侦察技术现状:现代侦察技术可通过高光谱、多光谱成像(覆盖光学、热红外、太赫兹、微波波段)探测目标的形状、材质与温度,且在卫星、航空器、地面设备中广泛应用。

2025-09-25 14:05:02 568

原创 COMSOL6.3软件下载安装教程及常见案例

‌‌‌‌‌‌COMSOL Multiphysics是一款功能强大的基于物理场,借助数值仿真理解、预测和优化工程设计软件,可用于建模和模拟任何基于物理的系统的软件环境,是全球通用的基于高级数值方法和模拟物理场问题的通用软件。案例六 波导模型(表面等离激元、石墨烯等)本征模式分析、各种类型波导传输效率求解。案例十九 微纳结构的非线性增强效应,以及共振模式的多极展开分析。案例十四 磁化的等离子体、各向异性的液晶、手性介质的仿真。案例十一 散射体的散射,吸收和消光截面的计算。

2025-09-25 13:43:08 576

原创 【Photonics for AI 的基本设计流程——以一个衍射神经网络为例】

衍射神经网络(Diffractive Neural Network, DNN)是一种基于光学衍射原理的物理实现AI模型,其设计流程结合了光学工程与深度学习技术。衍射神经网络由多层透射或反射式相位调制表面构成,每层通过纳米结构(如超表面)调制入射光波的相位分布。这种混合光电架构在MNIST分类中可实现97%的准确率,延迟低于1μs,功耗仅为传统GPU方案的千分之一。该方法在傅里叶光学仿真工具(如PyTorch中的可微分光学模块)中实现。为前一层的光场强度。为自由空间传递函数,

2025-09-22 13:59:30 521

原创 【金属结构疲劳寿命预测与健康监测技术—— 融合能量法、红外热像技术与深度学习的前沿实践】

金属结构疲劳寿命预测作为一门融合“固体力学-热物理学-数据科学”的深度交叉学科,亟需具备跨学科能力的复合型人才:既要深刻理解疲劳损伤的物理本质与理论体系,又需掌握有限元仿真、数据处理等现代工程工具,同时能驾驭深度学习模型进行时序数据挖掘与智能预测。当前,国内高端装备制造企业对具备上述能力的研发与运维人才需求迫切。为了系统性提升行业技术人员的理论水平与工程实践能力,攻克行业痛点### 金属结构疲劳寿命预测与健康监测技术。

2025-09-16 14:26:39 419

原创 智能光学计算成像技术与应用

智能光学计算成像是一个将人工智能(AI)与光学成像技术相结合的前沿领域,它通过深度学习、光学神经网络、超表面光学(metaphotonics)、全息技术和量子光学等技术,推动光学成像技术的发展。6.简单光学成像技术:基于计算成像,发展简单和紧凑的光学成像技术,也称为简单光学。7.端到端光学算法联合设计:计算光学成像包括了可微的衍射光学模型、折射光学模型以及基于可微光线追踪的复杂透镜模型,这些模型使得光学系统设计与图像处理算法可以联合优化。

2025-09-11 14:03:07 245

原创 【FDTD Solutions仿真全面教程:超构表面与光束操控的前沿探索】

尤其在超表面、光学设计、超构材料、光电器件等方面,FDTD作为一款强大的电磁仿真软件,对于科研工作者来说尤为重要。3、FDTD功能与使用 3.1主窗口——CAD人机交互界面 3.2计算机辅助设计(CAD)模拟编辑器:主标题栏、工具条、实体对象树实体对象库、脚本提示与脚本编辑窗口FDTD 仿真流程。1、FDTD Solutions 求解物理问题的方法 1.1 FDTD与麦克斯韦方程 1.2 FDTD中的网格化。4.2模拟的实体对象:基底、结构(Structures)的选择及设置。4、FDTD仿真通用流程。

2025-09-11 14:00:42 447

原创 【COMSOL 光学仿真新手教程:光子学与电磁学实操案例助力小白进阶(20个案例实战)】

波导模型(表面等离激元、石墨烯等)本征模式分析、各种类型波导传输效率求解。类比凝聚态领域魔角石墨烯的moiré 光子晶体建模以及物理分析。非厄米光学系统的奇异点:包括PT对称波导结构和光子晶体板系统等。光子晶体能带分析、能谱计算、光纤模态计算、微腔腔膜求解。微纳结构的非线性增强效应,以及共振模式的多极展开分析。超材料和超表面仿真设计,周期性超表面透射反射分析。磁化的等离子体、各向异性的液晶、手性介质的仿真。传播表面等离激元和表面等离激元光栅等。散射体的散射,吸收和消光截面的计算。学员感兴趣的其他案例。

2025-09-08 14:21:50 368

原创 【智能融合:增材制造多物理场AI建模与工业应用实战】

(3) 轻量化部署:针对边缘设备设计PINN剪枝方案,提升推理速度4.【工具链整合】覆盖主流工业软件与AI框架:构建无缝衔接企业技术栈的能力矩阵:(1) Fluent多物理场仿真输入UQ(2) ExaCA晶体结构预测数据生成(3) 同步辐射平台缺陷机制验证数据源5.【前沿跃迁】解锁下一代智能增材关键技术:前瞻性融合国际最新研究方向(1) 联邦学习:跨企业数据孤岛协作建模(如多基地工艺知识共享)(2) 多输出PINN:同步预测温度场-应力场-变形量,替代传统串行仿真;

2025-09-08 14:02:12 541

原创 【COMSOL 光学仿真新手教程:光子学与电磁学实操案例助力小白进阶(20个案例实战)】

安装 COMSOL 时需勾选“Wave Optics Module”或“RF Module”以支持光学仿真。启动后选择“模型向导”,根据需求选择“电磁波”或“光学”相关物理场。COMSOL Multiphysics 在光子学和电磁学仿真中应用广泛,以下为新手提供实操案例框架和关键学习路径。

2025-09-04 14:13:08 634

原创 金属结构疲劳寿命预测与健康监测技术—— 融合能量法、红外热像技术与深度学习的前沿实践

金属结构疲劳寿命预测作为一门融合“固体力学-热物理学-数据科学”的深度交叉学科,亟需具备跨学科能力的复合型人才:既要深刻理解疲劳损伤的物理本质与理论体系,又需掌握有限元仿真、数据处理等现代工程工具,同时能驾驭深度学习模型进行时序数据挖掘与智能预测。

2025-09-03 15:01:25 288

原创 AI - 有限元 - 数字孪生驱动:聚合物基多尺度复合材料建模 - 增材制造 - 性能预测全链条实战

国家需求层面,我国《“十四五”智能制造发展规划》在《智能制造技术攻关行动》专栏中,将“产品优化设计与全流程仿真、基于机理和数据驱动的混合建模、多目标协同优化等技术”列为关键核心技术。《国家自然科学基金机械工程学科发展战略报告》中将 “高性能机电装备设计与制造”列为优先资助领域,重点研究方向包括“复杂机电系统多学科集成,精准成形制造,数据驱动的智能制造系统,多维多参数测量与微纳制造”,为创新装备制造理论设计方法奠定基础。

2025-09-03 14:58:49 302

原创 【非线性超表面技术及应用】

非线性超表面是一种人工设计的二维结构,能够在亚波长尺度调控光场的振幅、相位和偏振,并产生非线性光学效应(如谐波生成、频率混频等)。其核心在于通过亚波长谐振单元打破空间对称性,实现高效的非线性光学转换。

2025-09-02 13:58:43 301

原创 光学神经网络与人工智能应用

v 前沿论文导读(Nature Photonics 17.12 (2023), Nature photonics 11.7 (2017))v 相关热点工作介绍与头脑风暴(多模衍射神经网络,分类器等) 光学矩阵-向量乘法器与光学深度神经网络。v 光学神经网络的概念和典型应用场景(神经网络/信息处理/光计算/异构计算等)v 光学神经网络的概念和典型应用场景(神经网络/信息处理/光计算/异构计算等)v 相关热点工作介绍与头脑风暴(神经网络光学协处理器等)v 空间光学上的——离散光学元件与网络。

2025-09-01 11:28:42 513

原创 如何用AI与有限元融合技术,突破复合材料研发的“成本墙”与“时间墙”?

例如,将在碳纤维-环氧树脂体系上训练好的模型,通过领域自适应(Domain Adaptation)等技术,快速迁移应用于预测玻璃纤维-聚酰亚胺或甚至金属基复合材料的性能,极大降低对新数据的需求。这是所有后续AI工作的数据基石。如果您对这个领域感兴趣,希望系统性地掌握从理论到代码的全套技能,那么这类深入探讨ABAQUS二次开发、PINN、迁移学习在复合材料中具体实现的专题培训,会是一个非常高效率的起点。这不是用AI取代FEA,而是让AI学会FEA的“物理思维”,让FEA吸收AI的“高效学习”能力。

2025-08-27 16:46:10 507

原创 【解锁Photonics for AI:系统学习光学神经网络与超表面设计,成就下一代光芯片工程师】

光学神经网络利用光子替代电子进行信息处理,具有低延迟、高带宽和低功耗优势。核心组件包括衍射光学元件(DOE)、马赫-曾德尔干涉仪(MZI)和微环谐振器。

2025-08-27 16:43:14 444

原创 【机器学习驱动的智能化电池管理技术与应用】

采用长短时记忆网络(LSTM)或卷积神经网络(CNN)实时估算电池的荷电状态(SOC)、健康状态(SOH)和功率状态(SOP)。例如,LSTM通过处理电压、电流和温度序列数据,SOC预测误差可控制在1%以内。输入特征包括循环次数、环境温度和放电深度,输出为剩余使用寿命(RUL)。边缘设备处理实时控制,云端执行重训练。智能手机通过动态电压调整算法(DVA)降低快充损耗,实验数据表明100次循环后容量衰减减少18%。某2MWh储能站采用随机森林算法优化充放电策略,日历寿命延长至8年,等效循环次数达6000次。

2025-08-26 15:18:52 1072

原创 【基于Fluent和深度学习算法驱动的流体力学计算与应用】

传统计算流体力学(CFD)依赖Fluent等软件进行数值模拟,但高精度模拟往往伴随巨大计算成本。深度学习通过数据驱动建模,可加速流场预测、优化网格生成或替代部分数值计算环节。使用卷积神经网络(CNN)处理结构化网格数据,或图神经网络(GNN)处理非结构化网格。例如,基于U-Net的架构可高效预测稳态流场。从Fluent仿真中提取流场数据(如速度、压力场),构建训练集。通过上述方法,可显著提升流体力学问题的求解效率,同时保持合理精度。在线计算时,ROM的推理速度比传统CFD快数个量级,适用于实时控制场景。

2025-08-21 13:43:06 493

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除