- 博客(58)
- 收藏
- 关注
原创 机器学习赋能的多尺度材料模拟与催化设计前沿技术
材料科学、物理学、化学、金属学与金属工艺、无机化工、有机化工、环境科学与资源利用、燃料化工、力学、自动化技术等领域的科研人员、工程师、及相关行业从业者、跨领域研究人员。主持国家自科基金及省部级项目10余项,发表SCI 检索论文160余篇,包括PNAS、Angewan. Chem.、Adv. Mater.、Adv. Fun. Mater.、ACS Catal.等化学材料类著名期刊,论文总共他引5800余次,H因子44。在多尺度理论模拟计算、人工智能机器学习在催化领域中应用等方面积累了丰富的经验。
2025-06-12 17:28:33
99
原创 基于CST+FDTD超表面正逆向设计应用(入门论文复现)
耦合模理论(Coupled Mode Theory, CMT)在超表面设计中的应用非常广泛,它主要用于分析和设计超表面的电磁行为,尤其是在处理光波与超表面相互作用时的模式耦合现象。据调查,目前在Nature和Science杂志上发表的超表面逆向设计方面的论文主要集中以下几个方面:1.新型光学功能的实现:研究如何通过逆向设计实现具有新颖光学功能(如负折射、光学隐身、超分辨率成像等)的超表面。6.拓扑光学和新型光子晶体:探索基于超表面的拓扑光学结构,以及新型光子晶体的设计和应用。
2025-06-11 15:23:01
579
原创 机器学习赋能的智能光子学器件系统研究与应用
5.1 微纳光子器件的基本原理与常见结构5.2 基于深度学习的光谱预测与逆向设计 案例分析:一维的和二维的全介质和金属SPR 材料的光谱预测案例操作:级联网络的超构表面单元的光谱预测与逆向设计5.3 基于机器学习的电磁近场预测和逆向设计 案例分析:大面积超构表面的近场预测与逆向设计 5.4 基于深度学习的超构单元生成 案例操作:基于生成-对抗网络的自由超构表面单元生成。深度学习在微纳光子学中的应用。
2025-06-11 14:53:41
164
原创 智能超表面逆向设计新潮流:COMSOL光电赋能光子学器件创新
实际设计需平衡计算精度与效率,建议从简单单元结构入手,逐步增加复杂度。最新研究显示,引入拓扑优化可使器件效率提升30%以上(参见Adv. Photonics 2023)),利用优化算法反向求解超表面单元结构参数。通过加载液晶材料,实现10°-350°连续相位调制。通过设定目标电磁响应(如相位分布。
2025-06-10 13:58:14
733
原创 机器学习在智能水泥基复合材料中的应用与实践
实例:XGBoost和LightGBM在水泥基复合材料性能预测中的应用,模型比较。论文实例解读与复现:选择两篇应用机器学习研究水泥基复合材料的SCI论文。实例:多项式回归在处理复合材料数据中的非线性关系时的应用。实例:线性回归和多项式回归在处理复合材料数据中的应用。实例:决策树回归在预测水泥基复合材料强度中的应用。实例:Catboost在预测复合材料强度中的应用。实例:构建简单的MLP解决复合材料中的回归问题。实例:SVR在预测复合材料的力学性能中的应用。实例:随机森林在预测复合材料性能中的应用。
2025-06-10 13:51:02
496
原创 基于AI-有限元融合的复合材料多尺度建模与性能预测前沿技术
国家需求层面,我国《国家自然科学基金“十四五”发展规划》中优先发展领域明确提出“面向航空航天、先进制造、新能源等领域对优异力学性能、特殊功能的新材料和新结构的迫切需求,重点研究新材料的本构理论、破坏理论、多尺度力学行为、新实验与计算方法,新结构的力学设计与分析、安全寿命评估、多功能驱动的设计方法、智能技术相结合的分析方法等。讲师来自全国重点大学、国家“985工程”、“211工程”重点高校,计算力学博士,主要研究方向:深度学习加速的FEA、多尺度分析方法、结构逆向设计等;
2025-06-10 13:48:12
707
原创 光子学器件构建的光学深度神经网络与应用
噪声控制需要优化光源的稳定性和波导的损耗,采用纠错编码和自适应光学技术可提升系统鲁棒性。光学深度神经网络(ODNN)利用光子学器件的高带宽、低延迟和并行处理能力,为人工智能计算提供高效解决方案。光子学器件如硅基光子集成电路(PIC)、马赫-曾德尔干涉仪(MZI)和微环谐振器(MRR)是实现ODNN的核心组件。通过调整谐振频率和耦合系数,光信号在微环中的传输特性可实现类似ReLU或Sigmoid的非线性响应。硅基光子集成电路通过集成激光器、调制器和探测器,实现光信号的产生、调制和检测。
2025-06-09 11:13:12
683
原创 深度学习在微纳光子学中的应用
通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。超表面设计:利用深度学习优化meta-atom单元结构,实现特定功能如光束偏转、聚焦等。从复杂的光学数据中自动提取关键特征,用于优化器件性能。结合实验数据训练模型,实现微纳光学系统的动态调控。多物理场耦合问题:需要处理光学、热学、力学等多场耦合的复杂关系。训练数据获取困难:微纳尺度实验数据成本高,常需结合仿真数据。集成光子器件:优化硅基光子回路中的耦合器和滤波器性能。腾讯会议–2025年6月21日。
2025-06-09 09:53:13
254
原创 【智能超表面逆向设计新潮流:COMSOL光电赋能光子学器件创新】
从理论模型的整合到光学现象的复杂模拟,从数据驱动的探索到光场的智能分析,机器学习正以前所未有的动力推动光子学领域的革新。据调查,目前在Nature和Science杂志上发表的机器学习与光子学结合的研究主要集中在以下几个方面:1.光子器件的逆向设计:通过机器学习,特别是深度学习,可以高效地进行光子器件的逆向设计,这在传统的多参数优化问题中尤为重要。5.智能光子系统的多任务优化:通过深度学习与拓扑优化的结合,可以同时优化多个光子器件的功能,提高设计效率并保证性能。
2025-06-04 14:13:59
315
原创 光子器件仿真软件基础与基于优化方法的器件逆向设计---案例片上米散射结构色超构表面单元仿真
注:具体参数需根据实际结构尺寸和材料特性调整,建议先进行单元仿真再扩展至周期阵列。商业软件Lumerical和开源工具MEEP均可实现上述功能,纳米结构特征尺寸小于50nm时需考虑量子效应修正。仿真波长范围需覆盖400-700nm可见光谱段。2025年06月21日-06月22日。2025年06月28日-06月29日。边界条件推荐PML(完美匹配层)网格分辨率建议≥50像素/微米。
2025-06-03 14:08:52
790
原创 智能光子系统的多任务优化---案例:基于双贝塞尔曲线的紧凑多模光学波导弯曲
通过深度学习与拓扑优化的结合,可以同时优化多个光子器件的功能,提高设计效率并保证性能。光子器件仿真软件基础与基于优化方法的器件逆向设计光子学器件的主要设计目标和调控思路2.2 Ansys optics 光子学仿真软件操作简介与使用技巧案例操作:基于双贝塞尔曲线的紧凑多模光学波导弯曲。
2025-06-03 14:04:24
644
原创 【空间光学系统与集成微纳光子学系统简介】
空间光学系统空间光学系统指用于太空探测、遥感、通信等领域的光学仪器,通常具备高分辨率、轻量化、抗辐射等特性。主要应用包括:天文观测:如哈勃望远镜、詹姆斯·韦伯太空望远镜(JWST),利用大口径主镜收集深空微弱信号。地球遥感:如高光谱成像仪、激光测距仪,用于环境监测、地形测绘等。深空探测:如火星探测器上的光谱仪,分析行星表面成分。关键技术包括:轻量化设计:采用碳纤维复合材料或蜂窝结构减轻重量。主动光学技术:通过实时调整镜面形状补偿热变形或重力影响。
2025-05-30 14:03:06
267
原创 【30万像素实时调控!石墨烯“魔镜”突破毫米波极限】
灰度图案: 创新性地采用3x3像素组成的“超级像素”策略,通过控制其中处于高/低态像素的数量比例,实现了10级灰度调控,生成了叉形衍射光栅和伊丽莎白女王二世肖像等精细灰度图像(图3e, f)。在6G通信中,这可用于实现动态用户跟踪、多用户空间复用(利用OAM的不同模式),甚至穿透障碍物的非视距(NLOS)通信。轨道角动量(OAM)光束生成: 当加载叉形光栅图案时,入射的高斯光束被转化为具有光学涡旋特征的环形拉盖尔-高斯光束(OAM态 l = ±1, ±2),即携带了轨道角动量(图5c)。
2025-05-30 13:54:58
271
原创 超表面设计革命:物理智能融合如何破解电磁调控世纪难题?——解析东南大学多维度复用超表面的创新突破
在这个数据泛滥而物理洞见稀缺的时代,PDID为我们提供了一种珍贵的方法论启示:真正的创新,往往诞生在学科交叉的“无人区”,存在于对基本原理的深刻理解与对新技术的大胆应用之间。从早期的试错法,到数值仿真的“暴力计算”,再到数据驱动的机器学习,每一次突破都伴随着工具的革新。PDID的出现,标志着我们进入了一个新的阶段——物理智能时代:它既不抛弃麦克斯韦方程组等第一性原理,也不拒绝深度学习的强大算力,而是通过两者的深度融合,实现了“用物理理解简化问题,用智能计算加速求解”的双重目标。
2025-05-28 13:38:41
812
原创 基于CST电磁仿真软件基础
8.基于耦合模理论的超表面逆向设计8.1 基于耦合模理论逆向设计连续谱中束缚态吸波器8.1.1 理论基础和分析8.1.2 仿真模拟和分析。5.超表面的耦合模理论5.1 耦合模理论简介5.2 超表面耦合模理论基本物理参数5.3 超表面耦合模方程和透射谱等参数计算。6.基于超表面实现电磁感应透明(EIT)6.1 超表面电磁感应透明理论分析6.2 太赫兹超表面电磁感应透明仿真模拟和分析。7.基于超表面实现连续谱中束缚态(BIC)7.1 连续谱中束缚态理论分析7.2 连续谱中束缚态仿真模拟和分析。
2025-05-27 13:56:34
381
原创 智能超表面逆向设计新潮流:COMSOL光电赋能光子学器件创新
擅长领域:太赫兹超表面、超表面耦合、量子光学以及量子光学与光子学的交叉学科研究等。据调查,目前在Nature和Science杂志上发表的机器学习与光子学结合的研究主要集中在以下几个方面:1.光子器件的逆向设计:通过机器学习,特别是深度学习,可以高效地进行光子器件的逆向设计,这在传统的多参数优化问题中尤为重要。擅长领域:微纳光子学、光电子集成芯片、拓扑光子学、计算光子学、以及深度学习与光子学的交叉学科研究等。擅长领域:微纳光子学、拓扑光子学、非厄米光子学、光芯片、电磁超材料器件等。
2025-05-27 13:51:59
1908
原创 【COMSOL拓扑光子学在拓扑边缘态和高阶拓扑角态应用的仿真研究】
关注2024年CLEO、META Conference等会议的"Topological Photonics"专题分会。注:具体文献需通过学术数据库获取,可重点查看清华大学电子系、新加坡国立大学先进二维材料中心等团队的最新成果。arXiv.org cond-mat.mes-hall子版块每日更新拓扑光子学最新成果。
2025-05-26 13:44:38
229
原创 COMSL传播表面等离激元(SPP)基础
表面等离激元(Surface Plasmon Polaritons, SPPs)是沿金属-介质界面传播的电磁波与自由电子集体振荡耦合形成的模式。分别为金属和介质的介电常数。光栅结构通过周期性调制SPP传播实现光束调控。
2025-05-26 11:16:59
1009
原创 【COMSOL超材料和超表面仿真设计】
超材料和超表面的设计通常需要自定义材料属性。在COMSOL中,可以通过定义介电常数和磁导率的张量来模拟超材料的特性。对于超表面,通常需要定义表面阻抗或等效电路模型。
2025-05-23 15:53:13
365
原创 【Nature子刊聚焦:超构表面多维调控与AI驱动的设计革命 ——2024-2025年超构表面领域突破性进展速览 】
超构表面技术的多维调控与AI驱动的设计革命为该领域带来了前所未有的发展机遇。通过精确控制电磁波的多维特性,并结合AI技术进行高效设计,超构表面在成像、传感、通信等领域的应用潜力得到了极大提升。尽管仍面临一些挑战,但随着技术的不断进步,超构表面有望在未来几年内实现更广泛的应用和商业化。【超表面逆向设计】论文复现:基于太赫兹超表面逆向设计。
2025-05-23 15:16:15
571
原创 COMSOL声学模块应用
Comsol软件作为多物理场仿真的先进工具,其声学模块能够模拟声波在不同介质中的传播和交互,对于声学设计和研究具有重要意义声学仿真技术在建筑声学、电声学、超声医学、噪声控制、振动分析等领域都有广泛应用。据调查,COMSOL声学模块主要应用以下几个方面:1、声学结构优化:通过拓扑优化等方法,设计出性能更优、成本更低的声学结构。3、声学超材料:设计和研究具有特殊声学性质的超材料,如负折射率、完美透镜效应、隐形斗篷等。4、电声学:在扬声器、麦克风、耳机等音频设备的设计和性能分析中发挥作用,提升音质和音效。
2025-05-21 11:12:58
309
原创 【基于深度学习的非线性光纤单像素超高速成像】
基于深度学习的非线性光纤单像素超高速成像是一种结合深度学习技术和单像素成像方法的前沿技术,旨在实现高速、高分辨率的成像。
2025-05-20 14:14:33
312
原创 COMSOL软件入门
初识COMSOL仿真——以多个具体的案例建立COMSOL仿真框架,建立COMSOL仿真思路,熟悉软件的使用方法1、COMSOL软件基本操作参数,变量,探针等设置方法、几何建模Ø基本函数设置方法,如插值函数、解析函数、分段函数等Ø特殊函数的设置方法,如积分、求极值、求平均值等Ø高效的网格划分 2、前处理和后处理的技巧讲解Ø特殊变量的定义,如散射截面,微腔模式体积等Ø如何利用软件的绘图功能绘制不同类型的数据图和动画Ø数据和动画导出Ø不同类型求解器的使用场景和方法COMSOL软件进阶。
2025-05-20 11:20:02
775
原创 【光子器件仿真软件基础与基于优化方法的器件逆向设计】
光子器件仿真软件是用于模拟和分析光子器件性能的工具,广泛应用于光通信、光传感、光计算等领域。这些软件通常基于有限元法(FEM)、有限差分时域法(FDTD)或光束传播法(BPM)等数值方法进行仿真。Lumerical FDTD Solutions 是一款基于FDTD方法的仿真软件,适用于纳米级光子器件的仿真。COMSOL Multiphysics 是一款多物理场仿真软件,支持光学、热学、力学等多个物理场的耦合仿真。通过结合光子器件仿真软件和优化算法,可以实现高效的器件逆向设计,从而加速新器件的开发过程。
2025-05-19 10:20:20
854
原创 光子器件的逆向设计:
腾讯会议:2025年06月21日-06月22日2024年06月28日-06月29日在人工智能与光子学设计融合的背景下,科研的边界持续扩展,创新成果不断涌现。从理论模型的整合到光学现象的复杂模拟,从数据驱动的探索到光场的智能分析,机器学习正以前所未有的动力推动光子学领域的革新。据调查,目前在Nature和Science杂志上发表的机器学习与光子学结合的研究主要集中在以下几个方面:光子器件的逆向设计是一种通过优化算法和计算模型来设计光子器件的方法,旨在实现特定的光学功能。
2025-05-19 10:17:05
1231
原创 【超材料和超表面仿真设计,周期性超表面透射反射分析】
超材料和超表面在电磁波调控、光学器件设计等领域具有广泛应用。周期性超表面的透射和反射分析是设计和优化这些结构的关键步骤。以下是一些常用的仿真设计方法和分析工具。
2025-05-15 13:30:45
826
原创 波导模型(表面等离激元、石墨烯等)本征模式分析、各种类型波导传输效率求解
其中,( k_0 ) 是自由空间波数,( \epsilon_m ) 和 ( \epsilon_d ) 分别是金属和介质的介电常数。其中,( \omega ) 是角频率,( \tau ) 是弛豫时间,( f_d(\epsilon) ) 是费米-狄拉克分布函数。对于表面等离激元波导,传输效率可以通过计算 SPP 的传播损耗来评估。石墨烯波导的传输效率可以通过计算石墨烯的损耗和波导的耦合效率来评估。波导的传输效率通常通过计算传输系数 ( T ) 来评估,传输系数定义为输出功率与输入功率的比值。
2025-05-15 11:53:02
819
原创 《Light》北京大学联合团队突破量子计算微型化革命:0.1毫米超表面集成多逻辑门,效率提升95%
传统量子光学器件如同“搭积木”——每个分束器(Beam Splitter, BS)需单独制造并精密对准,而超表面方案直接将复杂光路“印刷”在平面结构上。团队提出的**“并行分光”机制**(图2)是核心突破:超表面通过26个旋转纳米鳍单元构成周期性相位梯度,使得入射光子同时经历多路径干涉,等效于。这项研究不仅证明了超表面在量子信息处理中的巨大潜力,更颠覆了“量子设备必复杂”的传统认知。这项技术犹如为量子芯片植入“纳米级手术刀”,将复杂的光量子电路压缩至一片玻璃表面,为高密度量子集成打开了全新维度。
2025-05-14 10:24:21
1177
原创 【智能光学计算成像技术与应用】
4.基于PyTorch与TensorFlow的几种神经网络构建Ø 全连接网络Ø 卷积神经网络Ø U-NetØ Res-NetØ 实践:基本的全连接网络模型与卷积神经网络的搭建与训练图像的神经网络表示与ADMM图像重构。用一个纯相位镜头的灰度图像到高光谱图像(超光谱/解模糊/深度学习/点扩散函数设计/压缩成像)4.1无透镜成像的概念与基础Ø 点扩散函数(PSF) 调控与无透镜成像: 散射成像实例。2.超构表面与相位获取成像Ø 实例讲解:纳米光学高质量超构透镜成像(实践图像重构部分)
2025-05-14 10:20:03
489
原创 【机器学习赋能的智能光子学器件系统研究与应用】
从理论模型的整合到光学现象的复杂模拟,从数据驱动的探索到光场的智能分析,机器学习正以前所未有的动力推动光子学领域的革新。非线性光学材料和非厄米拓扑光子学为高性能片上处理方案提供了新的可能性,智能光子芯片在全光计算、信号处理和量子技术等领域具有广泛的应用前景。05智能光子系统的多任务优化。通过机器学习,特别是深度学习,可以高效地进行光子器件的逆向设计,这在传统的多参数优化问题中尤为重要。04非线性光学与光子芯片。通过深度学习与拓扑优化的结合,可以同时优化多个光子器件的功能,提高设计效率并保证性能。
2025-05-13 16:09:16
560
原创 超表面逆向设计及前沿应用(从基础入门到论文复现)
---(根据发表在Light&Science Application 上的论文)----(根据发表在Opto-Electronic Science 上的论文)----(根据发表在Chinese optics letters 上的论文)案例分析4:基于耦合模理论逆向设计连续谱中束缚态高Q器件论文复现和分析。案例分析2:基于超表面实现连续谱中束缚态(BIC)论文复现和讲解。----(根据发表在NANO LETTERS上的论文)----(根据发表在NANO LETTERS上的论文)
2025-05-13 16:06:26
1349
原创 机器学习驱动的智能化电池管理技术与应用
从电池性能的精确评估到复杂电池系统的智能监控,从数据驱动的故障诊断到电池寿命的预测优化,人工智能技术正以其强大的数据处理能力和模式识别优势,推动电池管理领域的技术进步。5.电池匹配与均衡:在电池组中,使用人工智能技术进行电池单体的匹配和均衡控制,确保电池组性能的一致性和稳定性。2.寿命预测:通过分析电池的使用历史和性能数据,预测电池的剩余使用寿命(RUL),帮助制定维护和更换计划。8.电池回收与二次利用:使用人工智能评估退役电池的状态,优化电池的回收和再利用流程。
2025-05-12 16:19:50
404
原创 comsol光电20个案例,助力小白进阶
北京理工大学的科研团队在这一前沿领域取得了重大突破,成功开发出一款具有640×512像素的CMOS集成有机神经形态成像仪,为高分辨率双模态成像带来了全新的解决方案,这款芯片不仅支持传统静态成像,还能通过“突触模式”实时处理动态视觉信息,记忆时间超过18分钟,单事件能耗低至4飞焦(fJ),相关研究成果发表于Nature Communications。相信在科研人员的不懈努力下,神经形态成像技术必将在未来的科技发展中发挥更加重要的作用,为人们的生活和社会的发展带来更多的便利和创新。
2025-05-12 16:11:09
363
原创 COMSOL声学多物理场仿真技术与应用
第二部分、声学/力学/机械超材料和拓扑特性仿真基础(进阶)第四部分、声学结构优化与工程化声学综合案例仿真(提升)第一部分、Comsol软件基础和声学仿真基础(入门)第三部分、声学微尺度操控(声镊方法)仿真基础(进阶)
2025-05-09 11:44:23
309
原创 【拓扑光子学与 COMSOL 光电模拟应用】
从几何模型的构建、材料属性的定义,到物理场的设置、网格划分、求解计算以及最后的结果分析与可视化,COMSOL 为我们提供了一个全面且强大的平台,助力科研人员深入探索拓扑光子学的奥秘,推动其在光通信、光学器件等领域的广泛应用。1.设置物理场:在 “RF、波动光学模块” 中,选择合适的物理接口,如 “电磁波,频域” 接口。3.物理场和网格设置:同样选择 “RF、波动光学模块” 中的 “电磁波,频域” 接口,并按照案例一中的方法进行网格划分,在两种晶格的界面处,适当加密网格,以更好地捕捉拓扑边缘态的场分布变化。
2025-05-09 11:40:15
562
原创 【AI+有限元技术颠覆材料研发:多尺度建模助力复合材料性能预测效率提升50%】
而随着AI与有限元技术的深度融合,一场静默的变革正在发生——美国国家材料实验室最新数据显示,采用多尺度建模技术的企业,材料研发周期平均缩短40%,成本下降35%。输入“密度<1.8g/cm³、抗拉强度>5GPa”等目标参数,AI在10分钟内生成200种候选材料结构,其中3种经实验验证具备可行性——这种“从性能倒推材料”的模式,彻底颠覆了传统研发逻辑。当AI突破人类认知的“材料基因组”,当有限元分析跨越从埃到米的尺度鸿沟,我们正在见证一场材料科学的“寒武纪大爆发”。从“试错”到“智造”,材料科学的范式革命。
2025-05-09 11:23:43
1014
原创 【《COMSOL 光学仿真新手教程:光子学与电磁学实操案例助力小白进阶》】
擅长领域:微纳光子学、拓扑光子学、非厄米光子学、光芯片、电磁超材料器件等。国际趋势方面,Nature Photonics、ACS Photonics等顶尖学术期刊持续聚焦“多物理场耦合”、“拓扑光子学”、“二维材料光学”等前沿研究方向,COMSOL技术与多学科知识融合驱动的光学创新研究正成为全球热点。由知名学者领衔的科研团队不断在超材料设计、光子器件优化、微纳结构仿真等方面取得突破性成果,推动着光学技术向更高精度、更广泛应用等目标加速迈进。
2025-05-06 13:58:35
698
原创 COMSOL声学多物理场仿真技术与应用
Comsol软件作为多物理场仿真的先进工具,其声学模块能够模拟声波在不同介质中的传播和交互,对于声学设计和研究具有重要意义声学仿真技术在建筑声学、电声学、超声医学、噪声控制、振动分析等领域都有广泛应用。据调查,COMSOL声学模块主要应用以下几个方面:1、声学结构优化:通过拓扑优化等方法,设计出性能更优、成本更低的声学结构。3、声学超材料:设计和研究具有特殊声学性质的超材料,如负折射率、完美透镜效应、隐形斗篷等。4、电声学:在扬声器、麦克风、耳机等音频设备的设计和性能分析中发挥作用,提升音质和音效。
2025-04-27 16:00:15
198
原创 【机器学习驱动的智能化电池管理技术与应用】
从电池性能的精确评估到复杂电池系统的智能监控,从数据驱动的故障诊断到电池寿命的预测优化,人工智能技术正以其强大的数据处理能力和模式识别优势,推动电池管理领域的技术进步。据最新研究动态,目前在电池管理领域的人工智能应用主要集中在以下几个方面:1.状态估计:包括电池的荷电状态(SOC)和健康状态(SOH)的实时监测与估计,使用机器学习算法提高估计的准确性。5.电池匹配与均衡:在电池组中,使用人工智能技术进行电池单体的匹配和均衡控制,确保电池组性能的一致性和稳定性。人工智能在电池荷电状态估计中的应用。
2025-04-27 14:46:20
755
原创 光学研究新风口!FDTD 仿真带你解锁超构表面与光束操控黑科技
例如,利用超构表面可以精准 “雕刻” 光束形状,生成涡旋光束、Airy 光束等特殊光束,这些光束在光通信中如同高效的 “信息快递员”,在光学成像里是精准的 “微观摄影师”,在光镊领域则化身为灵巧的 “分子搬运工” ,优势独特且应用前景广阔。从基底到结构,教你如何选择和设置模拟的实体对象;还会详细讲解 FDTD Solutions 的特点与应用,以及软件功能与使用,包括主窗口的 CAD 人机交互界面,从主标题栏到工具条,从实体对象树到脚本编辑窗口,带你熟悉软件的每一处 “角落”,为后续学习打下坚实基础。
2025-04-22 14:03:25
524
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人