- 博客(23)
- 收藏
- 关注
原创 头脑风暴 | 城市知识图谱的构建(Urban Knowledge Graph Construction)
The Method of Urban Knowledge Construction
2025-04-02 08:30:00
190
原创 动手实现第一个神经网络(75行代码)
可以修改为更复杂的非线性关系,例如将y=2。或者修改为多维输入,例如y=3。[×] wx公众号:卖火柴的码农。x+1 改为 y=2。
2025-02-27 10:00:00
333
原创 基础模型(Foundation Models)和大语言模型(Large Language Models)的区别
因为它们像“基础设施”一样,为开发者提供通用能力,后续可通过微调、提示工程等方式快速适配到具体场景,无需从头训练。例如,GPT-3既能写诗、编程,也能做客服对话,只需调整输入指令(Prompt)。基础模型(Foundation Models)和大语言模型(Large Language Models, LLMs)是两个相关但不同的概念,它们的区别主要体现在。:GPT-3/4、BERT、DALL-E、Stable Diffusion等(不仅限于语言模型,还包括多模态模型)。、具有广泛适应能力的模型。
2025-02-25 08:15:00
736
原创 No module named ‘volcenginesdkarkruntime‘ 这个问题如何解决 ( Help ! )
【代码】No module named ‘volcenginesdkarkruntime‘ 这个问题如何解决 ( Help!
2025-01-10 22:25:44
1591
3
原创 动手实现逻辑回归(logistic regression)
对于2.1节例子而言,如下图4所示,显然蓝色的分界线是最有效的,也就是说预测函数hθ(x)中的θ0取-3,θ1取1,θ2取1,此时代价函数的值一定是最接近于0的,因为当前的预测函数能准确地分析出样本的类别。由于二分类样本标签有正例和负例,故有两类情况,如下图5所示,这里引入log函数,同时将自变量的值限制在0到1之间,对于3+1*x1+1*x2这个例子而言,我们设定阈值为0.5,若输出值hθ(x)>0.5,则为A类(红色o),若输出值hθ(x)<0.5,则为B类(绿色+)。图 4 预测函数分析样本类别。
2025-01-10 08:30:00
1351
原创 多模态数据大一统
总的来说,Meta-Transformer 展示了使用Transformer架构进行统一多模态学习的潜力,为未来开发能够处理多种模态的智能系统提供了新的方向。然而,该论文的局限性在于模型未考虑了时间和结构信息,同时在生成任务上的性能有待考量。的统一框架,用于处理多种模态的数据(如自然语言、2D图像、3D点云、音频、视频、时间序列、表格数据等),并在无需配对的多模态训练数据的情况下进行多模态感知。代码链接: https://github.com/invictus717/MetaTransformer。
2025-01-09 10:15:00
711
原创 大语言模型与知识图谱的构建与推理
大语言模型(LLM)的优势在于其具有很强的上下文理解能力和大量语料库的知识学习,本论文[1]提出GPT4和用于对话的子系列ChatGPT作为研究的模型,通过实体和关系识别、事件提取、链接预测和知识推理四大任务上进行性能对比。同时,考虑到LLM是否具备足够的泛化能力去构建知识图谱,本研究构造了一个虚拟数据集,该数据集在现实中并不存在,因而有效规避了LLM依赖于过去知识的学习。此外,本研究在知识推理上借助LLM引入多个代理(Agent),为知识推理提供了新的思路。未来,本研究将考虑知识图谱中的多模态推理。
2024-11-14 09:45:00
219
原创 字符串处理函数:puts、gets、strcat、strcpy、strcmp、strlen
字符串处理函数:puts、gets、strcat、strcpy、strcmp、strlen
2023-03-23 15:00:00
748
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人