这张图片可视化(“颜值”)还是不错的,这段时间多锻炼锻炼自己
图1-1 中国二手车交易量预测(单位:百万)
不错的,保持图标标题名称标注的规范化,特别是在最后提交的论文中
后边写问题分析的时候,可以考虑下赛题之间的关系,怎么表述的有关联性一些;问题重述中这样子就欧克的
论文(一)
负责论文的同学需要懂模型,这样方便沟通,写起来更顺畅一些,至少需要提前学会如下,主要是知道如何描述为什么用这个,使用这个的流程(我们如何对数据如何操作,提前写写,积累一下语感和写这个的套路)
Ps:重点在于描述,大概知道其逻辑,不一定需要知道内部数学或者代码
- 数据预处理
- 特征处理
- 模型——(1)评估(2)预测(3)分类
虽然负责论文不需要具体懂代码和数学公式,但是一些符号表示或者一些变量之间的传递逻辑必须要清楚,具体可以参考这些代码文章中的部分描述,以及论文中数学公式之间的一些文字描述
二手车价格预测实战(一)——数据探索_Datapie的博客-CSDN博客_二手车价格预测
可以根据内在的板块,再去搜查对应的一些通俗化表达,比如我们会先对数据的偏度峰度进行观测,我们这边用代码或者数学公式表示,负责论文的就查阅(微信/知乎)上一些解释的比较通俗易懂的观点,再结合自己的加工(比如:为什么要这么使用,如何使用的,不要写的跟数学公式一样的机械化和模板化)
问题背景
参考题目,但是不能照搬题目,可以搜索相关主题的文献资料,都会有背景方面的描述,类似于产品介绍的市场;篇幅一般在半面到一面均可;不会作为重要的区分点,主要体现研究主题的价值/意义。
问题重述
基本就是把原题目的问题换一种表述的方式,并且对于几个问题之间的关联阐述的更清楚,更有逻辑性一点。“在第一问的基础上”...
问题分析
与“问题重述”板块较为相似,但是问题分析需要更加结合这个问题背后的本质是预测、分类还是评估,对应的解决方法或者模型是什么?更加侧重于技术性的去剖析这个题目