自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(89)
  • 资源 (136)
  • 收藏
  • 关注

原创 【博客目录导航】

博客目录导航

2022-09-10 22:44:17 1133

原创 【学习资源汇总】

学习资源汇总

2022-09-10 22:13:22 775

原创 【python自动创建文件夹】

借鉴https://github.com/ultralytics/yolov5/blob/master/utils/general.py中的increment_path函数。python自动创建文件夹,在模型推理时,可自动生成结果文件夹且自动更新,不会覆盖上一次结果,和yolov5中类似;判断给出给出的路径是文件,还是文件夹。判断给出的路径是图像还是一个视频;自动生成新的exp保存文件。

2024-07-15 22:44:01 465

原创 【读写yaml文件】

使用yaml.load()和yaml.safe_load() 都可以,后者一般更安全。

2024-07-15 22:31:25 117

原创 【Samba端口映射文件共享】

在windows下访问 \[\IP-ADDRESS\SHARE-NAME](file://IP-ADDRESS/SHARE-NAME),提示输入用户名和密码,就能进入了,地址斜杠方向不能错,没有端口,用户名是smb的用户名。首先需要安装samba,Samba是在Linux和UNIX系统上实现SMB协议的一个免费软件,由服务器及客户端程序构成。SMB(Server Messages Block,信息服务块)新建一个名为lyrichu 的共享账户,账户名随意,若是公用服务器,则需要在root路径下;

2024-06-24 21:39:08 841

原创 【YOLOv9算法原理简介】

【代码】【YOLOv9算法原理简介】

2024-05-08 22:51:40 355

原创 【积分,微分,导数,偏导数公式推导】

微分 ( df ) 与导数紧密相关,它描述了当 ( x ) 增加一个非常小的量 ( dx ) 时,函数 ( f(x) ) 的变化量。这个值是 ( f(x) ) 在 ( x ) 从 ( a ) 到 ( b ) 区间内的累积效果,可以理解为 ( f(x) ) 与 ( x ) 轴之间形成的曲边梯形的面积。所以,函数 ( f(x) = x^2 ) 的导数 ( f’(x) = 2x )。如果这个极限存在,那么 ( f(x) ) 在点 ( x ) 是可导的。其中,( F(x) ) 是 ( f(x) ) 的一个原函数。

2024-05-07 19:21:09 1488

原创 装饰器(Decorator)和迭代器(Iterator)

装饰器是一种设计模式,用于修改或增强已有函数或方法的功能,而不需要更改其实际代码。装饰器通过在函数或方法的外部包装另一个函数来实现,通常用于日志记录、性能测试、事务处理、缓存、权限校验等场景。迭代器是一种对象,它允许你遍历一个集合对象,而不需要了解该对象的底层数据结构。Python中的匿名函数,也称为“lambda函数”,是一种简洁的定义单行函数的方式。,这个新函数在执行时会先执行一些额外的代码,然后调用原始的。是一个单个的表达式,匿名函数返回该表达式的值。函数,并在执行完毕后执行更多的代码。

2024-05-07 19:08:27 578

原创 【图像特征点匹配】

基于深度学习的图像特征点匹配是利用深度神经网络来提取图像特征,并在不同图像间寻找并匹配这些特征点。这种方法相比传统的特征点匹配方法(如SIFT、SURF等)在特征表达能力上具有明显优势,尤其是在处理复杂场景和大规模数据集时。SuperPoint是一种自监督的特征点检测和描述方法,它能够提取像素级精度的特征点及其描述子。图像特征点匹配是计算机视觉中的一项关键技术,它涉及在两个或多个图像之间寻找并匹配具有独特属性的点,这些点被称为特征点。策略,通过对图像进行多尺度和多角度变换来增强特征点的复检率和跨域实用性。

2024-05-06 20:46:11 250

原创 【光流(Optical Flow)估计】

光流(Optical Flow)是计算机视觉中的一种技术,用于估计图像中每个像素点在连续帧之间的运动情况。光流算法的目标是找到在两个相邻帧之间从一个位置移动到另一个位置的图像中的每个像素的位移向量。Lucas-Kanade 算法的基本思想是在一个局部窗口内对图像进行匹配,并假设这个窗口内的像素具有相同的运动。光流算法基于一个假设:相邻帧中的相同物体在图像中的运动应该是连续的。这些基于深度学习的光流算法通常在大规模的光流数据集上进行训练,以学习图像中的运动模式。

2024-04-13 22:32:42 1466

原创 【OpenCV基础知识点总结】

OpenCV(开源计算机视觉库)是一个广泛应用于图像和视频处理的Python库。

2024-03-03 16:33:25 568

原创 【Pycharm使用教程】

pycharm中刷新项目文件

2023-06-10 09:08:49 206

原创 【yolo算法txt格式标签转json格式】

格式, 注意是一个图片对应一个json文件。yolo算法txt格式标签转。

2023-05-20 10:01:51 1452 1

原创 【Opencv读取中文路径图像】

Opencv读取中文路径图像。

2023-03-23 10:39:15 271

原创 【对极几何】Opencv在原图中画极线

【代码】【对极几何】Opencv在原图中画极线。

2023-03-11 16:56:48 549

原创 【统计labelme标签中检测框的数量】

对labelme标注的检测框中的目标类别和数量进行统计。

2023-02-14 16:10:08 757

原创 【Python-word相关转换】

【代码】【Python合并多个PDF文件】

2022-12-26 20:57:41 259

原创 【word文档使用方法记录】论文格式修改

(根据实际情况)第一步:先设定中间位置,制表位位置字符输入20,对齐方式选择居中,然后选择设置,这一步主要是设定公式居中。在光标所在的行会出现一个闪动的光标,这时候按下Tab键,光标就会移动到中间,也就是我们设定的20字符位置,右键粘贴,这个公式就居中了。第二步:设定靠右,制表位位置字符输入39.5,对其方式选择右对齐,然后选择设置,这一步主要是设定公式编号靠右。第四步:公式编号靠右。编号居于公式中间的方法,先选中公式编号,然后右键选择段落,选择换行与分页,文本对其方式选择居中对其,然后确定。

2022-12-24 15:45:41 1123

原创 【Python-opencv视频取帧】

【代码】【Python-opencv视频取帧】

2022-11-30 09:10:07 802

原创 【双目标定和立体矫正】

(2)将混合矩阵分离成为相机内参矩阵和相机外参矩阵,首先求解相机内参矩阵;(1)首先求解单应矩阵,单应矩阵是相机内参矩阵与相机外参矩阵的混合矩阵;(3)然后求解相机外参矩阵。

2022-11-25 12:52:57 1081 2

原创 【模型训练】YOLOv7车辆三类别检测

YOLOv7车辆三类别检测

2022-11-24 18:56:02 2077 5

原创 【模型训练】YOLOv7车辆和行人检测

yolov7行人和车辆检测

2022-11-23 19:52:05 2853 5

原创 【模型训练】yolov7猫狗检测

YOLOv7猫狗检测

2022-11-22 20:45:31 1354 1

原创 【Ubuntu系统安装显卡驱动 & opencv& qt】

安装好Ubuntu系统后,按照一下步骤安装显卡驱动, 一安装cuda10.2和cudnn7.6.5为例。打开下载网页,https://opencv.org/releases/, 下载3.14.11 版本的。点击应用更改,此时需要等待大约半小时时间,会出现正在安装的进度条。修改后需要重启系统。

2022-11-19 20:40:42 419

原创 【Darknet版YOLOv3&YOLOv4模型训练】

在Windows平台下是通过project文件去管理这些的,如果不用CMake,那我们为Windows和Linux系统就要写对应的project文件和makefile文件,这无疑是一件繁琐的事,而我们只要编写一次CMake,就可以用在各个平台,而且其语法也简单。labelimg标注完数据之后以.xml数据的格式进行保存,只能创建矩形框更加适用于目标检测制作数据集,如YOLO,而labelme以.json文件的数据格式进行保存,可以创建多种类型的边框进行标注,适用于图像分割,如MaskRcnn。

2022-11-18 18:21:17 1491

原创 【C++】黑马程序员 C++学习课程—C++核心编程

*作用:**函数名可以相同,提高复用性同一个作用域下函数名称相同函数参数类型不同或者个数不同或者顺序不同函数的返回值不可以作为函数重载的条件//函数重载需要函数都在同一个作用域下{cout

2022-11-14 20:46:41 1310

原创 【C++】黑马程序员 C++学习课程—C++基础入门

所谓数组,就是一个集合,里面存放了相同类型的数据元素**特点1:**数组中的每个数据元素都是相同的数据类型**特点2:**数组是由连续的内存位置组成的[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-POLAhiWr-1668259558255)(assets/1541748375356.png)]数据类型 数组名[ 数组长度 ];数据类型 数组名[ 数组长度 ] = { 值1,值2 ...};数据类型 数组名[ ] = { 值1,值2 ...};示例//定义方式1。

2022-11-12 21:37:52 2975

原创 【Numpy学习笔记】

中的参数应该是列表,或者嵌套列表,或者元组,中间的值是用逗号隔开的,而数组是用空格隔开的,中间没有逗号,这个一定得注意。其中tup是arrays序列,tup : sequence of ndarrays(元组)保存的arr0.npy如下,注意这种格式的文件用txt文本打开会乱码。函数原型:numpy.hstack(tup)函数原型:numpy.hstack(tup)

2022-11-10 21:07:43 899

原创 【EndNote X9.1 汉化版使用指南】

Endnote中对参考文献输出格式的修改在Edit中,点击菜单栏的Edit→Output styles→Chinese Std GBT7714(numeric),点击Edit” Chinese Std GBT7714(numeric)”(如果Output styles中没有显示Chinese Std GBT7714(numeric),则先在Edit→Output styles→Open style manager中找到Chinese Std GBT7714(numeric)并勾选)。

2022-11-07 16:42:21 4385

原创 【模型训练】YOLOv7飞鸟检测

YOLOv7飞鸟检测和识别

2022-11-06 21:31:41 1649 1

原创 【模型训练】YOLOv7不同颜色安全帽佩戴检测

yolov3&yolov7不同颜色安全帽佩戴检测

2022-11-02 22:38:17 1589 5

原创 【模型训练】YOLOv7道路交通标志检测

yolov7道路交通标志检测

2022-11-01 22:19:44 2010

原创 【win10下VS2022安装OpenCV4.5.4】

win10下VS2022安装OpenCV4.5.4安装注意事项。

2022-10-31 10:24:11 741

原创 【win10常用命令】

4、更改anaconda 终端中的根目录:打开windoes ,打开anaconda文件鼠标右击ananconda prompt,选更多,后打开文件所在目录,选中右击选择属性,选快捷方式,更改起始位置为所需目录。下载 Pandoc 安装文件,根据使用操作系统,选择相应的安装文件(官网下载地址),这里以 windows 操作系统为例(xxx.msi)。(2)创建成功后,使用 conda info -e #会有新建环境出现。#-i为视频名称, -ss为剪辑起始时间,-t为剪辑时长。

2022-10-28 19:02:45 1279

原创 【常用指令ubuntu18.04】

keras-yolo3 视频检测出现 Couldn‘t open webcam or video问题的解决方法: python yolo_video.py --input ./video/0.mp4 #视频改为自己的路径(有待验证)#conda创建python环境,其中 -n 后边的参数指的是环境的名称,此处我使用的是 deeplab,你可以换成任意你喜欢的名称。#conda创建python环境,其中 -n 后边的参数指的是环境的名称,此处我使用的是 tf,你可以换成任意你喜欢的名称。

2022-10-28 18:55:01 1710

原创 【Python】Python进阶

python进阶

2022-10-27 18:23:56 445

原创 【Python】os模块路径处理

os.remove(’./labels/a.txt’) 只能删除文件。

2022-10-27 18:14:32 293

原创 【Python】列表list

extend()函数的语法:list.extend(seq),参数是可迭代对象,可以是字符串、列表、元组、集合、字典,若为字典,则仅会将键(key)作为元素依次添加至原列表的末尾。与append()函数进行对比:append()函数用于在列表末尾添加新的对象,即将新序列整体作为一个新的元素添加到原列表的末尾。让动态地创建列表易如反掌,例如,你可以先创建一个空列表,再使用一系列的append() 语句添加元素。你可以使用pop() 来删除列表中任何位置的元素,只需在括号中指定要删除的元素的索引即可。

2022-10-26 22:51:33 461

原创 【模型训练】YOLOv7行人检测

yolov7行人检测&行人检测数据集

2022-10-26 22:42:44 4063 16

原创 【Python】迭代器和生成器

⽣成器也是⼀种迭代器,但是你只能对其迭代⼀次

2022-10-25 22:04:19 212

YOLO11-DeepSORT检测和跟踪识别和跟踪和分析纸币的微观特征-帮助进行货币鉴别和防伪+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT检测和跟踪识别和跟踪和分析纸币的微观特征-帮助进行货币鉴别和防伪+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共813张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:banknote(纸币) 3. yolo项目用途:用于识别和分析纸币的微观特征,帮助进行货币鉴别和防伪 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-11

YOLO11-DeepSORT检测和跟踪和识别和跟踪寄生虫-检测和跟踪医学诊断和寄生虫学研究+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT检测和跟踪和识别和跟踪寄生虫-检测和跟踪医学诊断和寄生虫学研究+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共2110张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:parasites(寄生虫),包括 Ancylostoma_Spp(钩虫属)、Ascaris_Lumbricoides(蛔虫)、Enterobius_Vermicularis(蛲虫)、Fasciola_Hepatica(肝片吸虫)、Hymenolepis(膜壳绦虫)、Schistosoma(血吸虫)、Taenia_Sp(绦虫属)、Trichuris_Trichiura(鞭虫)等 3. yolo项目用途:检测和识别寄生虫,用于医学诊断和寄生虫学研究 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-11

YOLO11-DeepSORT检测和跟踪和识别和跟踪电路元件-检测和跟踪电子电路设计和故障排查+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT检测和跟踪和识别和跟踪电路元件-检测和跟踪电子电路设计和故障排查+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共772张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:circuit-elements(电路元件),包括 Button(按钮)、Buzzer(蜂鸣器)、Capacitor_Jumper(电容跳线)、Capacitor_Network(电容网络)、Capacitor(电容器)、Clock(时钟)、Connector(连接器)、Diode(二极管)、EM(电磁元件)、Electrolytic_Capacitor(电解电容器)、Ferrite_Bead(磁珠)、Flex_Cable(柔性电缆)、Fuse(保险丝)、IC(集成电路)、Inductor(电感器)、Jumper(跳线)、Led(发光二极管)、Pads(焊盘)、Pins(引脚)、Potentiometer(电位器)、Resistor_Jumper(电阻跳线)、Resistor_Network(电阻网络)、Resistor(电阻器)、Switch(开关)、Test_Point(测试点)、Transducer(换能器)、Transformer(变压器)、Transistor(晶体管)、Unknown_Unlabeled(未知未标记)等 3. yolo项目用途:检测和识别电路元件,用于电子电路设计和故障排查 4. 可视化参考链接:https://blog.csdn.net/weixin_511

2025-06-11

YOLO11-DeepSORT检测和跟踪和识别和跟踪电缆的类型和状态-检测和跟踪电力和通信工程+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT检测和跟踪和识别和跟踪电缆的类型和状态-检测和跟踪电力和通信工程+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共6830张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:cables(电缆),包括 Antenne(天线)、BBS(基带站)、BFU(基带单元)、Batterie(电池)、DDF(数字配线架)、PCF(电源控制单元)、PCU_AC(交流电源单元)、PCU_DC(直流电源单元)、PDU(电源分配单元)、PSU(电源供应单元)、RBS(无线基站)等 3. yolo项目用途:检测和识别电缆的类型和状态,用于电力和通信工程 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-11

YOLO11-DeepSORT检测和跟踪分析《Apex 英雄》游戏中的内容-帮助优化游戏体验和平衡性调整+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT检测和跟踪分析《Apex 英雄》游戏中的内容-帮助优化游戏体验和平衡性调整+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共3689张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:包括 character(角色)、weapon(武器)、item(物品)等 3. yolo项目用途:用于分析《Apex 英雄》游戏中的内容,帮助优化游戏体验和平衡性调整 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-11

YOLO11-DeepSORT检测和跟踪施工 site 中的安全隐患-保障 construction workers 的安全+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT检测和跟踪施工 site 中的安全隐患-保障 construction workers 的安全+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共1206张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:construction-safety(施工安全),包括 helmet(安全帽)、no-helmet(无安全帽)、no-vest(无背心)、person(人员)、vest(背心)等 3. yolo项目用途:检测施工 site 中的安全隐患,保障 construction workers 的安全 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-11

YOLO11-DeepSORT跟踪卡车的移动轨迹-检测和跟踪物流管理和交通监控+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT跟踪卡车的移动轨迹-检测和跟踪物流管理和交通监控+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共1055张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:truck-movement(卡车移动),包括 otr_chassis_loaded(载重卡车底盘)、otr_chassis_unloaded(空载卡车底盘)、otr_chassis_working(工作中的卡车底盘)、person(人员)、stacker(堆垛机)等 3. yolo项目用途:跟踪卡车的移动轨迹,用于物流管理和交通监控 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-10

YOLO11-DeepSORT分析妇科学磁共振图像-辅助诊断女性生殖系统疾病+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT分析妇科学磁共振图像-辅助诊断女性生殖系统疾病+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共2901张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:gynecology-mri(妇科学磁共振成像),包括 6W(6周)、7W(7周)、EH(早期妊娠)等 3. yolo项目用途:分析妇科学磁共振图像,辅助诊断女性生殖系统疾病 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-10

YOLO11-DeepSORT分析道路交通状况-检测和跟踪交通管理和智能交通系统开发+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT分析道路交通状况-检测和跟踪交通管理和智能交通系统开发+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共1628张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:road-traffic(道路交通),包括 bicycles(自行车)、buses(公交车)、crosswalks(人行横道)、fire_hydrants(消防栓)、motorcycles(摩托车)、traffic_lights(交通灯)、vehicles(车辆)等 3. yolo项目用途:分析道路交通状况,用于交通管理和智能交通系统开发 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-10

YOLO11-DeepSORT分类和识别和跟踪不同类型的云-检测和跟踪气象学研究和天气预报+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT分类和识别和跟踪不同类型的云-检测和跟踪气象学研究和天气预报+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共5040张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:cloud-types(云类型),包括 Fish(鱼形云)、Flower(花形云)、Gravel(砾石云)、Sugar(糖状云)等 3. yolo项目用途:分类和识别不同类型的云,用于气象学研究和天气预报 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-10

yolov12-pyqt5-gui在通信基础设施巡检中-检测识别和定位手机信号塔-帮助评估信号覆盖和塔的健康状况+数据集+训练好的模型+pyqt5可视化界面.zip

yolov12-pyqt5-gui在通信基础设施巡检中-检测识别和定位手机信号塔-帮助评估信号覆盖和塔的健康状况+数据集+训练好的模型+pyqt5可视化界面包含pyqt可视化界面,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共1008张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:cell-tower(手机信号塔) 3. yolo项目用途:在通信基础设施巡检中,用于识别和定位手机信号塔,帮助评估信号覆盖和塔的健康状况 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502

2025-06-10

yolov12分类和识别不同类型的云-检测气象学研究和天气预报+数据集+训练好的模型.zip

检测气象学研究和天气预报

2025-06-10

yolov12-pyqt5-gui通过航拍图像监测奶牛的位置和活动情况-检测农业管理+数据集+训练好的模型+pyqt5可视化界面.zip

yolov12-pyqt5-gui通过航拍图像监测奶牛的位置和活动情况-检测农业管理+数据集+训练好的模型+pyqt5可视化界面

2025-06-10

yolov12-pyqt5-gui检测文档内容分析和信息提取-识别文档中的段落结构-帮助实现文本内容的自动化处理+数据集+训练好的模型+pyqt5可视化界面.zip

yolov12-pyqt5-gui检测文档内容分析和信息提取-识别文档中的段落结构-帮助实现文本内容的自动化处理+数据集+训练好的模型+pyqt5可视化界面包含pyqt可视化界面,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共6063张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:paragraph(段落) 3. yolo项目用途:用于文档内容分析和信息提取,识别文档中的段落结构,帮助实现文本内容的自动化处理 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502

2025-06-10

yolov12-pyqt5-gui识别和分类硬币的类型和面值-检测金融和考古研究+数据集+训练好的模型+pyqt5可视化界面.zip

yolov12-pyqt5-gui识别和分类硬币的类型和面值-检测金融和考古研究+数据集+训练好的模型+pyqt5可视化界面

2025-06-10

yolov12-pyqt5-gui检测洗手间的设施和布局-检测公共场所管理和设施规划+数据集+训练好的模型+pyqt5可视化界面.zip

yolov12-pyqt5-gui检测洗手间的设施和布局-检测公共场所管理和设施规划+数据集+训练好的模型+pyqt5可视化界面包含pyqt可视化界面,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共2978张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:washroom(洗手间),包括 bathtub(浴缸)、geyser(热水器)、mirror(镜子)、showerhead(淋浴喷头)、sink(水槽)、toilet(厕所)、towel(毛巾)、washbasin(洗手盆)、wc(马桶)等 3. yolo项目用途:检测洗手间的设施和布局,用于公共场所管理和设施规划 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502

2025-06-10

yolov12-pyqt5-gui分类和识别不同类型的云-检测气象学研究和天气预报+数据集+训练好的模型+pyqt5可视化界面.zip

yolov12-pyqt5-gui分类和识别不同类型的云-检测气象学研究和天气预报+数据集+训练好的模型+pyqt5可视化界面包含pyqt可视化界面,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共5040张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:cloud-types(云类型),包括 Fish(鱼形云)、Flower(花形云)、Gravel(砾石云)、Sugar(糖状云)等 3. yolo项目用途:分类和识别不同类型的云,用于气象学研究和天气预报 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502

2025-06-09

YOLOv10-PyQt5-GUI在渔业市场中-检测识别不同种类的鱼-帮助进行分类和库存管理+数据集+训练好的模型+pyqt5可视化界面.zip

YOLOv10-PyQt5-GUI在渔业市场中-检测识别不同种类的鱼-帮助进行分类和库存管理+数据集+训练好的模型+pyqt5可视化界面包含pyqt可视化界面,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共16865张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:fish(鱼) 3. yolo项目用途:在渔业市场中,用于识别不同种类的鱼,帮助进行分类和库存管理 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502

2025-06-09

YOLOv10-PyQt5-GUI在通信基础设施巡检中-检测识别和定位手机信号塔-帮助评估信号覆盖和塔的健康状况+数据集+训练好的模型+pyqt5可视化界面.zip

YOLOv10-PyQt5-GUI在通信基础设施巡检中-检测识别和定位手机信号塔-帮助评估信号覆盖和塔的健康状况+数据集+训练好的模型+pyqt5可视化界面包含pyqt可视化界面,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共1008张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:cell-tower(手机信号塔) 3. yolo项目用途:在通信基础设施巡检中,用于识别和定位手机信号塔,帮助评估信号覆盖和塔的健康状况 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502

2025-06-09

YOLOv10-PyQt5-GUI通过航拍图像监测奶牛的位置和活动情况-检测农业管理+数据集+训练好的模型+pyqt5可视化界面.zip

YOLOv10-PyQt5-GUI通过航拍图像监测奶牛的位置和活动情况-检测农业管理+数据集+训练好的模型+pyqt5可视化界面包含pyqt可视化界面,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共1723张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:aerial-cows(空中奶牛) 3. yolo项目用途:通过航拍图像监测奶牛的位置和活动情况,用于农业管理 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502

2025-06-09

YOLO11-DeepSORT识别和跟踪棉花植株的病害类型和严重程度-为病害防治提供依据+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT识别和跟踪棉花植株的病害类型和严重程度-为病害防治提供依据+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共1024张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:cotton-plant-disease(棉花植株病害),包括 dc(数据类别)等 3. yolo项目用途:识别棉花植株的病害类型和严重程度,为病害防治提供依据 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-12

YOLO11-DeepSORT识别和跟踪和分析葡萄酒标签-检测和跟踪产品管理和市场研究+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT识别和跟踪和分析葡萄酒标签-检测和跟踪产品管理和市场研究+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共4643张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:wine-labels(葡萄酒标签),包括 Alcohol_Percentage(酒精含量)、Appellation_AOC_DOC_AVA_Region(产区)、Appellation_Quality_Level(质量等级)、Country(国家)、Distinct_Logo(独特标志)、Established_Year(成立年份)、Maker_Name(生产者名称)、Organic(有机)、Sustainable(可持续)、Sweetness_Brut_Sec(甜度)、Type(类型)、Vintage_Year(年份)等 3. yolo项目用途:识别和分析葡萄酒标签,用于产品管理和市场研究 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-12

YOLO11-DeepSORT识别和跟踪和分析绘画作品中的人物形象-检测和跟踪艺术研究和图像分析+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT识别和跟踪和分析绘画作品中的人物形象-检测和跟踪艺术研究和图像分析+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共909张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:people-in-paintings(绘画中的人物),包括 Human(人)等 3. yolo项目用途:识别和分析绘画作品中的人物形象,用于艺术研究和图像分析 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-12

YOLO11-DeepSORT识别和跟踪和分类硬币的类型和面值-检测和跟踪金融和考古研究+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT识别和跟踪和分类硬币的类型和面值-检测和跟踪金融和考古研究+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共8419张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:coins(硬币),包括 coin(硬币)、nail(钉子)、nut(螺母)、screw(螺丝)等 3. yolo项目用途:识别和分类硬币的类型和面值,用于金融和考古研究 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-12

YOLO11-DeepSORT识别和跟踪和分类手写数字-检测和跟踪光学字符识别和跟踪和数字图像处理+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT识别和跟踪和分类手写数字-检测和跟踪光学字符识别和跟踪和数字图像处理+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共4103张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:digits(数字),包括 0(零)、1(一)、2(二)、3(三)、4(四)、5(五)、6(六)、7(七)、8(八)、9(九)等 3. yolo项目用途:识别和分类手写数字,用于光学字符识别和数字图像处理 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-12

YOLO11-DeepSORT识别和跟踪和分类不同类型的车辆-检测和跟踪交通管理和自动驾驶+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT识别和跟踪和分类不同类型的车辆-检测和跟踪交通管理和自动驾驶+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共4058张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:vehicles(车辆),包括 big_bus(大型公交车)、big_truck(大型卡车)、bus-l-(长型公交车)、bus-s-(短型公交车)、car(轿车)、mid_truck(中型卡车)、small_bus(小型公交车)、small_truck(小型卡车)、truck-l-(长型卡车)、truck-m-(中型卡车)、truck-s-(短型卡车)、truck-xl-(特大型卡车)等 3. yolo项目用途:识别和分类不同类型的车辆,用于交通管理和自动驾驶 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-12

YOLO11-DeepSORT识别和跟踪和定位棋子-检测和跟踪棋类游戏分析和教学+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT识别和跟踪和定位棋子-检测和跟踪棋类游戏分析和教学+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共289张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:chess-pieces(棋子),包括 bishop(象)、black-bishop(黑象)、black-king(黑王)、black-knight(黑马)、black-pawn(黑兵)、black-queen(黑后)、black-rook(黑车)、white-bishop(白象)、white-king(白王)、white-knight(白马)、white-pawn(白兵)、white-queen(白后)、white-rook(白车)等 3. yolo项目用途:识别和定位棋子,用于棋类游戏分析和教学 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-12

YOLO11-DeepSORT识别和跟踪各类害虫-检测和跟踪农业害虫防治和生态环境保护+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT识别和跟踪各类害虫-检测和跟踪农业害虫防治和生态环境保护+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共717张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:pests(害虫),包括 Agrotis(夜蛾属)、Athetis_lepigone(一种 moth)、Athetis_lineosa(另一种 moth)、Chilo_suppressalis(螟虫)、Cnaphalocrocis_medinalis_Guenee(一种害虫)、Creatonotus_transiens(一种 moth)、Diaphania_indica(一种螟虫)、Endotricha_consocia(一种 moth)、Euproctis_sparsa(一种 moth)、Gryllidae(蟋蟀科)、Gryllotalpidae(蝼蛄科)、Helicoverpa_armigera(棉铃虫)、Holotrichia_oblita_Faldermann(一种金龟子)、Loxostege_sticticalis(一种 moth)、Mamestra_brassicae(菜青虫)、Maruca_testulalis_Geyer(一种 moth)、Mythimna_separata(粘虫)、Naranga_aenescens_Moore(一种 moth)、Nilaparvata(一种蚜虫)、Paracymoriza_taiwanalis(一种 moth)、Sesamia_inferens

2025-06-12

YOLO11-DeepSORT识别和跟踪电缆的损伤情况-检测和跟踪电力设施维护和安全检查+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT识别和跟踪电缆的损伤情况-检测和跟踪电力设施维护和安全检查+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共1318张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:cable-damage(电缆损伤),包括 break(断裂)、thunderbolt(雷击)等 3. yolo项目用途:识别电缆的损伤情况,用于电力设施维护和安全检查 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-12

YOLO11-DeepSORT识别和跟踪材料的腐蚀情况-检测和跟踪工业设备维护和材料性能评估+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT识别和跟踪材料的腐蚀情况-检测和跟踪工业设备维护和材料性能评估+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共1249张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:corrosion(腐蚀),包括 Slippage(滑移)、corrosion(腐蚀)、crack(裂纹)等 3. yolo项目用途:识别材料的腐蚀情况,用于工业设备维护和材料性能评估 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-12

YOLO11-DeepSORT区分杂草和作物-检测和跟踪精准农业和杂草控制+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT区分杂草和作物-检测和跟踪精准农业和杂草控制+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共1176张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:weed-crop(杂草作物),包括 crop(作物)、weed(杂草)等 3. yolo项目用途:区分杂草和作物,用于精准农业和杂草控制 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-12

YOLO11-DeepSORT区分草类和杂草-检测和跟踪农业管理和园林维护+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT区分草类和杂草-检测和跟踪农业管理和园林维护+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共2486张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:grass-weeds(草类杂草),包括 0_ridderzuring(0号杂草)等 3. yolo项目用途:区分草类和杂草,用于农业管理和园林维护 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-12

YOLO11-DeepSORT区分不同类型的药丸-检测和跟踪制药行业和药品管理+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT区分不同类型的药丸-检测和跟踪制药行业和药品管理+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共451张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:pills(药丸),包括 Cipro_500(西普罗500毫克)、Ibuphil_600_mg(布洛芬600毫克)、Ibuphil_Cold_400-60(布洛芬感冒400-60毫克)、Xyzall_5mg(Xyzal 5毫克)、blue(蓝色药丸)、pink(粉色药丸)、red(红色药丸)、white(白色药丸)等 3. yolo项目用途:区分不同类型的药丸,用于制药行业和药品管理 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-12

YOLO11-DeepSORT利用航拍图像识别和跟踪和定位泳池-为游泳池管理和维护提供数据支持+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT利用航拍图像识别和跟踪和定位泳池-为游泳池管理和维护提供数据支持+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共946张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:aerial-pool(空中泳池),包括 black-hat(黑色帽子)、bodysurface(身体表面)、bodyunder(身体下部)、umpire(裁判员)、white-hat(白色帽子)等 3. yolo项目用途:利用航拍图像识别和定位泳池,为游泳池管理和维护提供数据支持 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-12

YOLO11-DeepSORT检测和跟踪印刷电路板上的元件和线路-检测和跟踪电子制造和质量控制+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT检测和跟踪印刷电路板上的元件和线路-检测和跟踪电子制造和质量控制+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共672张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:printed-circuit-board(印刷电路板),包括 Button(按钮)、Capacitor_Jumper(电容跳线)、Capacitor(电容器)、Clock(时钟)、Connector(连接器)、Diode(二极管)、EM(电磁元件)、Electrolytic_Capacitor(电解电容器)、Ferrite_Bead(磁珠)、IC(集成电路)、Inductor(电感器)、Jumper(跳线)、Led(发光二极管)、Pads(焊盘)、Pins(引脚)、Resistor_Jumper(电阻跳线)、Resistor_Network(电阻网络)、Resistor(电阻器)、Switch(开关)、Test_Point(测试点)、Transistor(晶体管)、Unknown_Unlabeled(未知未标记)、iC(集成电路)等 3. yolo项目用途:检测印刷电路板上的元件和线路,用于电子制造和质量控制 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-12

YOLO11-DeepSORT检测和跟踪洗手间的设施和布局-检测和跟踪公共场所管理和设施规划+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT检测和跟踪洗手间的设施和布局-检测和跟踪公共场所管理和设施规划+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共2978张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:washroom(洗手间),包括 bathtub(浴缸)、geyser(热水器)、mirror(镜子)、showerhead(淋浴喷头)、sink(水槽)、toilet(厕所)、towel(毛巾)、washbasin(洗手盆)、wc(马桶)等 3. yolo项目用途:检测洗手间的设施和布局,用于公共场所管理和设施规划 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-12

YOLO11-DeepSORT检测和跟踪文档数字化和智能文档处理-识别和跟踪文档中的不同元素-提高信息提取的效率+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT检测和跟踪文档排版分析和内容识别和跟踪-帮助实现文档的自动化处理和排版优化+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共12040张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:包括 paper-section(纸张部分)、margin(页边距)等 3. yolo项目用途:用于文档排版分析和内容识别,帮助实现文档的自动化处理和排版优化 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-11

YOLO11-DeepSORT检测和跟踪文档内容分析和信息提取-识别和跟踪文档中的段落结构-帮助实现文本内容的自动化处理+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT检测和跟踪文档内容分析和信息提取-识别和跟踪文档中的段落结构-帮助实现文本内容的自动化处理+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共6063张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:paragraph(段落) 3. yolo项目用途:用于文档内容分析和信息提取,识别文档中的段落结构,帮助实现文本内容的自动化处理 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-11

YOLO11-DeepSORT检测和跟踪水族馆中的生物识别和跟踪和监测-帮助管理水族馆内的生态系统+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT检测和跟踪水族馆中的生物识别和跟踪和监测-帮助管理水族馆内的生态系统+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共638张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:包括 fish(鱼)、coral(珊瑚)、plant(植物)等 3. yolo项目用途:用于水族馆中的生物识别和监测,帮助管理水族馆内的生态系统 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-11

YOLO11-DeepSORT检测和跟踪水下考古和海洋环境监测-识别和跟踪水下的各种物体和垃圾-保护海洋环境+数据集+deepsort跟踪算法+训练好的检测模型.zip

YOLO11-DeepSORT检测和跟踪水下考古和海洋环境监测-识别和跟踪水下的各种物体和垃圾-保护海洋环境+数据集+deepsort跟踪算法+训练好的检测模型集成了deepsort跟踪算法,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共7600张图像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:包括 underwater-object(水下物体)、marine-debris(海洋垃圾)等 3. yolo项目用途:用于水下考古和海洋环境监测,识别水下的各种物体和垃圾,保护海洋环境 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502 5. 下拉页面至“资源详情处”查看具体具体内容;

2025-06-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除