动态规划之常用dp类型

常用dp类型

线性dp

何谓线性dp?

答:递推方程有一个线性关系

数字三角形

题目描述

给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大。

        7
      3   8
    8   1   0
  2   7   4   4
4   5   2   6   5

输入格式

第一行包含整数 n,表示数字三角形的层数。

接下来 n 行,每行包含若干整数,其中第 i 行表示数字三角形第 i 层包含的整数。

输出格式

输出一个整数,表示最大的路径数字和。

数据范围

1≤n≤500,
−10000≤三角形中的整数≤10000

输入样例

5
7
3 8
8 1 0 
2 7 4 4
4 5 2 6 5

输出样例

30

分析

状态表示f(i,j):所有从起点走到(i,j)的路径
			属性:Max
状态计算:f(i,j) -- [来自左上|来自右上]
			左上:f(i-1,j-1)+a(i,j)
			右上:f(i-1,j)+a(i,j)
状态转移方程f(i,j) = max(f(i-1,j-1),f(i-1,j))+a(i,j)

核心代码

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, INF = 0x3f3f3f;
int n;
int v[N][N], f[N][N];

int main()
{
    cin >> n;
    
    for(int i = 1; i <= n; i ++)
        for(int j = 1; j <= i; j ++)
            cin >> v[i][j];
    
    for(int i = 0; i <= n + 1; i ++)//初始化的时候需要多初始化一些
        for(int j = 0; j <= n + 1; j ++)
            f[i][j] = -INF;
    
    f[1][1] = v[1][1];//第一行第一列的值 = v[1][1]
    for(int i = 2; i <= n; i ++)//从第二行进行递推
        for(int j = 1; j <= i; j ++)
            f[i][j] = max(f[i - 1][j - 1], f[i - 1][j]) + v[i][j];
    
    int res = -INF;
    for(int i = 1; i <= n; i ++)
        res = max(res, f[n][i]);
    
    cout << res << endl;
    return 0;
}

最长上升子序列

题目描述

给定一个长度为 N 的数列,求数值严格单调递增的子序列的长度最长是多少。

输入格式

第一行包含整数 N。

第二行包含 N 个整数,表示完整序列。

输出格式

输出一个整数,表示最大长度。

数据范围

1≤N≤1000,
−109≤数列中的数≤109

输入样例

7
3 1 2 1 8 5 6

输出样例

4

分析

状态表示f[i]:所有以第i个数结尾的上升子序列集合
		属性: Max
状态计算f[i] -- [0|1|2|3|……|i-1]
		aj < ai: f[j]+1
状态转移f[i] = max(f[j]+1),j = 0,1,2,……,i-1

核心代码O(N^2)

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010, INF = 0x3f3f3f3f;
int n;
int a[N],f[N];

int main()
{
    cin >> n;
    for(int i = 1; i <= n; i ++) cin >> a[i];
    
    for(int i = 1; i <= n; i ++){
        f[i] = 1;
        for(int j = 0; j <= i - 1; j ++)
            if(a[i] > a[j]){
                 f[i] = max(f[i], f[j] + 1);   
            }
    }
    
    int res = -INF;
    for(int i = 1; i <= n; i ++)
        res = max(res, f[i]);
        
    cout << res << endl;
    return 0;
}

优化

思路

将所有长度的最长上升子序列的最小值存在下,
猜想:随着最长上升子序列长度的增加,数值应该严格单调递增
增加一个数到数列中,找到一个数使之前一个数≤ai<后一个数,接着用ai覆盖右边的数。

代码

#include <iostream>

using namespace std;

const int N = 100010;
int n;
int a[N], q[N];

int main()
{
    cin >> n;
    
    for(int i = 0; i < n; i ++) cin >> a[i];
    
    int len = 0;
    q[0] = -2e9;
    for(int i = 0; i < n; i ++){//利用二分
        int l = 0, r = len;
        while(l < r){
            int mid = l + r + 1 >> 1;//向上取整
            if(q[mid] < a[i]) l = mid;
            else r = mid - 1;
        }
        len = max(len, r + 1);
        q[r + 1] = a[i];
    }
    cout << len << endl;
    return 0;
}

最长公共子序列

题目描述

给定两个长度分别为 N 和 M 的字符串 A 和 B,求既是 A 的子序列又是 B 的子序列的字符串长度最长是多少。

输入格式

第一行包含两个整数 N 和 M。

第二行包含一个长度为 N 的字符串,表示字符串 A。

第三行包含一个长度为 M 的字符串,表示字符串 B。

字符串均由小写字母构成。

输出格式

输出一个整数,表示最大长度。

数据范围

1≤N,M≤1000

输出样例

4 5
acbd
abedc

输出样例

3

题目分析

状态表示f(i,j):所有在第一个序列的前i个字母中出现,且在第二个序列的前j个字母中出现的子序列
		属性:Max 
状态计算f(i,j) -- [00|01|10|11]
		00:不选ai、bj  --  f[i-1,j-1]
		01:不选ai、选bj  ∈  f[i-1,j]
		10:选ai、不选bj  ∈  f[i,j-1]
		11:选ai、bj  --  f[i-1,j-1] + 1
其中f[i-1,j-1]  ∈  [ f[i-1,j] | f[i,j-1] ]

代码

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;
char a[N], b[N];
int f[N][N];
int n, m;

int main()
{
    cin >> n >> m;
    scanf("%s%s",a + 1, b + 1);
    
    for(int i = 1; i <= n; i ++)
        for(int j = 0; j <= m; j ++){
            f[i][j] = max(f[i - 1][j], f[i][j - 1]);
            f[i][j] = max(f[i][j], f[i - 1][j - 1] + (a[i] == b[j]));
        }
    
    cout << f[n][m] << endl;
    return 0;
}

最短编辑距离

题目描述

给定两个字符串 A 和 B,现在要将 A 经过若干操作变为 ,可进行的操作有:

  1. 删除–将字符串 A 中的某个字符删除。
  2. 插入–在字符串 A 的某个位置插入某个字符。
  3. 替换–将字符串 A 中的某个字符替换为另一个字符。

现在请你求出,将 A 变为 B 至少需要进行多少次操作。

输入格式

第一行包含整数 n,表示字符串 A 的长度。

第二行包含一个长度为 n 的字符串 A。

第三行包含整数 m,表示字符串 B 的长度。

第四行包含一个长度为 m 的字符串 B。

字符串中均只包含大写字母。

输出格式

输出一个整数,表示最少操作次数。

数据范围

1≤n,m≤1000

输入样例

10 
AGTCTGACGC
11 
AGTAAGTAGGC

输出样例

4

分析

状态表示f(i,j):将所有a[1~i]变成b[1~j]的操作方式
		属性:Min
状态计算f(i,j)  --  [删|增|改]
		删:a(i-1)与bj匹配  --  f(i-1,j)+1
		增:ai与b(j-1)匹配  --  f(i,j-1)+1
		改:i-1与j-1匹配 ai变成bj? --  f(i-1,j-1)+1/0

代码

#include<iostream>
#include<algorithm>

using namespace std;

const int N = 1010;
int n, m;
char a[N], b[N];
int f[N][N];

int main(){
    scanf("%d%s", &n, a + 1);
    scanf("%d%s", &m, b + 1);
    
    for(int i = 0; i <= m; i ++) f[0][i] = i;//a[0]匹配b[i],增加a的长度
    for(int i = 0; i <= n; i ++) f[i][0] = i;//把a的前i个字母与b0匹配,删除a的字母长度
    
    for(int i = 1; i <= n; i ++){
        for(int j = 1; j <= m; j ++){
            f[i][j] = min(f[i - 1][j] + 1, f[i][j - 1] + 1);
            f[i][j] = min(f[i][j], f[i - 1][j - 1] + (a[i] != b[j]));
        }
    }
    cout << f[n][m] << endl;
    return 0;
}

编辑距离

题目描述

给定 n 个长度不超过 10 的字符串以及 m 次询问,每次询问给出一个字符串和一个操作次数上限。

对于每次询问,请你求出给定的 n 个字符串中有多少个字符串可以在上限操作次数内经过操作变成询问给出的字符串。

每个对字符串进行的单个字符的插入、删除或替换算作一次操作。

输入格式

第一行包含两个整数 n 和 m。

接下来 n 行,每行包含一个字符串,表示给定的字符串。

再接下来 m 行,每行包含一个字符串和一个整数,表示一次询问。

字符串中只包含小写字母,且长度均不超过 10。

输出格式

输出共 m 行,每行输出一个整数作为结果,表示一次询问中满足条件的字符串个数。

数据范围

1≤n,m≤1000

输入样例

3 2
abc
acd
bcd
ab 1
acbd 2

输出样例

1
3

分析

这题就是对最短编辑距离的应用

代码

#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

const int M = 1010;
int n, m;
char str[M][M];
int f[M][M];

int edit_distance(char a[],char b[])
{
    int la = strlen(a + 1), lb = strlen(b + 1);
    
    for(int i = 0; i <= lb; i ++) f[0][i] = i;
    for(int i = 0; i <= la; i ++) f[i][0] = i;
    
    for(int i = 1; i <= la; i ++){
        for(int j = 1; j <= lb; j ++){
            f[i][j] = min(f[i - 1][j] + 1, f[i][j - 1] + 1);
            f[i][j] = min(f[i][j], f[i - 1][j - 1] + (a[i] != b[j]));
        }
    }
    return f[la][lb];
}

int main()
{
    scanf("%d%d", &n, &m);
    
    for(int i = 0; i < n; i ++) scanf("%s", str[i] + 1);
    
    while(m --){
        char s[M];
        int limit;
        scanf("%s%d", s + 1, &limit);
        int res = 0;

        for(int i = 0; i < n; i ++)
            if(edit_distance(str[i], s) <= limit)
                res ++;
        
        printf("%d\n", res);
    }
    
    return 0;
}

区间dp

石子合并

题目描述

设有 N 堆石子排成一排,其编号为 1,2,3,…,N。

每堆石子有一定的质量,可以用一个整数来描述,现在要将这 N 堆石子合并成为一堆。

每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。

例如有 4 堆石子分别为 1 3 5 2, 我们可以先合并 1、2 堆,代价为 4,得到 4 5 2, 又合并 1,2 堆,代价为 9,得到 9 2 ,再合并得到 11,总代价为 4+9+11=24;

如果第二步是先合并 2,3 堆,则代价为 7,得到 4 7,最后一次合并代价为 11,总代价为 4+7+11=22。

问题是:找出一种合理的方法,使总的代价最小,输出最小代价。

输入格式

第一行一个数 N 表示石子的堆数 N。

第二行 N 个数,表示每堆石子的质量(均不超过 1000)。

输出格式

输出一个整数,表示最小代价。

数据范围

1≤N≤300

输入样例

4
1 3 5 2

输出样例

22

题目分析

状态表示f(i,j):所有将第i堆石子到第j堆石子合并成一堆石子的合并方式
			属性:Min
状态计算f(i,j) --  [1|2|3|……|k-2|k-1]

一堆石子   i———————————j
可以分成   [i,k],[k+1,j]
f[i,j] = min{f[i,k] + f[k+1,j] + s[j] - s[i-1]}k:[l,j-1]

代码

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 310;
int n;
int s[N];
int f[N][N];

int main(){
    cin >> n;

    for (int i = 1; i <= n; i ++) {
        cin >> s[i];
        s[i] += s[i - 1];
    }

    // 区间 DP 枚举套路:长度+左端点 
    for (int len = 1; len < n; len ++) { // len表示i和j堆下标的差值
        for (int i = 1; i + len <= n; i ++) {
            int j = i + len; // 自动得到右端点
            f[i][j] = 1e8;
            for (int k = i; k <= j - 1; k ++) { // 必须满足k + 1 <= j
                f[i][j] = min(f[i][j], f[i][k] + f[k + 1][j] + s[j] - s[i - 1]);
            }
        }
    }

    cout << f[1][n] << endl;

    return 0;
}

计数dp

整数划分

题目描述

一个正整数 n 可以表示成若干个正整数之和,形如:n=n1+n2+…+nk,其中 n1≥n2≥…≥nk,k≥1。

我们将这样的一种表示称为正整数 n 的一种划分。

现在给定一个正整数 n,请你求出 n 共有多少种不同的划分方法。

输入格式

共一行,包含一个整数 n。

输出格式

共一行,包含一个整数,表示总划分数量。

由于答案可能很大,输出结果请对 109+7 取模。

数据范围

1≤n1000

输入样例:

5

输出样例:

7

法一分析

状态表示f(i,j):从1~i中选,体积恰好为j
			属性:数量
状态计算f(i,j)  --  [0|1|2|……|s]
			0  --  f(i-1,j)
			1  --  f(i-1,j-i)
			s  --  f(i-1,j-si)
可以从完全背包问题角度来思考
即将每个背包容量变为i

代码

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010, mod = 1e9 + 7;
int n;
int f[N];

int main()
{
    cin >> n;
    f[0] = 1;
    for(int i = 1;i <= n; i ++){
        for(int j = i; j <= n; j++){
            f[j] = (f[j] + f[j-i]) % mod;
        }
    }
    cout << f[n] << endl;
    
    return 0;
}

法二分析

状态表示f(i,j):所有总和是i并且恰好表示成j个数的和的方案
			属性:数量
状态计算f(i,j)  --  [最小值1|最小值>1]
			最小值=1:f(i-1,j-1)
			最小值>1:f(i-j,j)
状态转移方程f(i,j) = f(i-1,j-1)+f(i-j,j)

代码

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010, mod = 1e9 + 7;
int n;
int f[N][N];

int main()
{
    cin >> n;
    f[0][0] = 1;
    for(int i = 1; i <= n; i ++){
        for(int j = 1; j <= i; j ++){
            f[i][j] = (f[i - 1][j - 1] + f[i - j][j]) % mod;
        }
    }
    
    int res = 0;
    for(int i = 1; i <= n; i ++){
        res = (res + f[n][i]) % mod;
    }
    cout << res << endl;
}

树形dp

没有上司的舞会

题目描述

Ural 大学有 N 名职员,编号为 1∼N。

他们的关系就像一棵以校长为根的树,父节点就是子节点的直接上司。

每个职员有一个快乐指数,用整数 Hi 给出,其中 1≤i≤N。

现在要召开一场周年庆宴会,不过,没有职员愿意和直接上司一起参会。

在满足这个条件的前提下,主办方希望邀请一部分职员参会,使得所有参会职员的快乐指数总和最大,求这个最大值。

输入格式

第一行一个整数 N。

接下来 N 行,第 ii 行表示 ii 号职员的快乐指数 Hi。

接下来 N−1 行,每行输入一对整数 L,K,表示 K 是 L 的直接上司。

输出格式

输出最大的快乐指数。

数据范围

1≤N≤6000,
−128≤Hi≤127

输入样例:

7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5

输出样例:

5

分析

状态表示f[u,0]:所有以u为根的子树中选,并且不选u这个点的方案
       f[u,1]:所有以u为根的子树中选,并且选u的方案
     属性:Max
状态计算  f[u,0]  --  ∑max(f(si,0),f(si,1))
		 f[u,1]  --  ∑f(si,0)

代码

#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

const int N = 6010;
int n;
int happy[N];
int h[N], e[N], ne[N], idx;
int f[N][2];
bool has_father[N];

void add(int a, int b){
    e[idx] = b;
    ne[idx] = h[a];
    h[a] = idx ++;
}

void dfs(int u){
    f[u][1] = happy[u];
    
    for(int i = h[u]; i != -1; i = ne[i]){
        int j = e[i];
        dfs(j);
        f[u][0] += max(f[j][0], f[j][1]);
        f[u][1] += f[j][0];
    }
}

int main()
{
    cin >> n;
    
    for(int i = 1; i <= n; i ++) cin >> happy[i];
    
    memset(h, -1, sizeof h);
    
    for(int i = 0; i < n - 1; i ++){
        int a, b;
        scanf("%d%d", &a, &b);
        has_father[a] = true;
        add(b, a);
    }
    
    int root = 1;
    
    while(has_father[root]) root ++;
    
    dfs(root);
    
    printf("%d\n",max(f[root][0],f[root][1]));
    return 0;
}

记忆化搜索

滑雪

题目描述

给定一个 R 行 C 列的矩阵,表示一个矩形网格滑雪场。

矩阵中第 i 行第 j 列的点表示滑雪场的第 i 行第 j 列区域的高度。

一个人从滑雪场中的某个区域内出发,每次可以向上下左右任意一个方向滑动一个单位距离。

当然,一个人能够滑动到某相邻区域的前提是该区域的高度低于自己目前所在区域的高度。

下面给出一个矩阵作为例子:

 1  2  3  4 5

16 17 18 19 6

15 24 25 20 7

14 23 22 21 8

13 12 11 10 9

在给定矩阵中,一条可行的滑行轨迹为 24−17−2−1。

在给定矩阵中,最长的滑行轨迹为 25−24−23−…−3−2−1,沿途共经过 25 个区域。

现在给定你一个二维矩阵表示滑雪场各区域的高度,请你找出在该滑雪场中能够完成的最长滑雪轨迹,并输出其长度(可经过最大区域数)。

输入格式

第一行包含两个整数 R 和 C。

接下来 R 行,每行包含 C 个整数,表示完整的二维矩阵。

输出格式

输出一个整数,表示可完成的最长滑雪长度。

数据范围

1≤R,C≤300,
0≤矩阵中整数≤10000

输入样例:

5 5
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9

输出样例:

25

题目分析

状态表示f(i,j):所有从(i,j)开始滑的路径
			属性:Max
状态计算f(i,j)  --  max{存在[上|右|左|下]}
			上:f(i-1,j)+1
			右:f(i,j+1)+1
			左:f(i,j-1)+1
			下:f(i+1,j)+1

代码

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 310;

int n, m;
int h[N][N];
int f[N][N];
int next[4][2] = {{0,1},{1,0},{0,-1},{-1,0}};

int dp(int x, int y){
    int &v = f[x][y];
    if(v != -1) return v;
    
    v = 1;
    for(int k = 0; k < 4; k ++){
        int tx = x + next[k][0], ty = y + next[k][1];
        if(tx >= 1 && tx <= n && ty >= 1 && ty <= m && h[tx][ty] < h[x][y]){
            v = max(v, dp(tx, ty) + 1);
        }
    }
    return v;
}

int main()
{
    scanf("%d%d", &n, &m);
    
    for(int i = 1; i <= n; i ++){
        for(int j = 1; j <= m; j ++){
            cin >> h[i][j];
        }
    }
    memset(f, -1, sizeof f);
    
    int res = 0;
    for(int i = 1; i <= n; i ++){
        for(int j = 1; j <= m; j ++){
            res = max(res, dp(i, j));
        }
    }
    cout << res << endl;
    return 0;
}

总结

dp优化

动态规划的优化一般是将原先的式子做等价变形,因此需要先写出原先的式子

dp通解

dp: 状态表示f(i,j)//考虑维度
		集合?
		属性Max,Min,数量?
	状态计算--集合划分,看最后一步
				不重:当属性为数量不能够重复
				不漏
  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值