自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(131)
  • 资源 (2)
  • 收藏
  • 关注

转载 python获取当前文件所在目录和当前工作目录

【代码】python获取当前文件所在目录和当前工作目录。

2024-04-22 17:25:17 404

原创 推土机距离的两个公式

简而言之,这两个公式都描述了Wasserstein距离,但它们从不同的角度来表达这个概念:第一个公式从最优传输的角度出发,第二个公式则利用Lipschitz连续函数的对偶性。在实际应用中,比如在生成对抗网络(GANs)中使用Wasserstein距离时,通常会根据具体的计算需求选择适当的表述形式。这两个公式都是用来描述Wasserstein距离(推土机距离)的不同表达方式。表示的是Wasserstein距离的原始定义,它通过考虑所有可能的联合分布。是K-Lipschitz连续的,即对于所有的。

2024-03-04 15:33:55 1063

原创 diffusion中为什么神经网络要预测噪音

预测噪音每一步都有前一步的基础,两张图片之间差的就是噪音而已,看上去是在预测噪音,实际上是把原图特征剥离出来,既然差距只有噪音,显然,预测噪音比预测原图容易多了。在diffusion中,有一个跟以往不一样的点,就是,他是预测噪音,随后剥离然后生成图像,但是为什么要这样做呢,我认为原因如下。

2024-01-27 15:39:17 557

原创 安装SDXL时tokenizers报错

tokenizers的版本太低了,升级到0.15.0,同时transformer也得改,改成>=原始版本就OK。

2024-01-26 03:05:19 684

原创 LDM中的对数据做正态分布应该怎么理解

所谓的生成模型所以需要通过一个神经网络,把一个复杂的数据分布,映射到一个我们已经知晓的数据分布,但是在实际的生成过程中,我们只给出了一个随机在标准正态分布中采样的数据,那其实就变成了,我们把一个标准的正态分布的数据映射到一个已知数据的分布上,也就是训练数据集的分布。客观数据的分布是很复杂的,,神经网络想要拟合客观数据非常难,所以才需要使用一个正态分布和神经网络一起把数据映射到另一个数据。那显然不可能是纯高斯分布,甚至就连这里的从标准高斯分布去拟合整体数据分布,也都是认为规定的。

2024-01-26 01:52:19 372

原创 pip清华源怎么换回来

删掉/home/XXX/.config/pip/pip.conf。

2024-01-26 01:14:24 568

原创 Ubuntu20.04安装cuda12.11

首先就是安装显卡驱动,我是双3090,不知道为什么,官网死活安不上,最后从软件更新那里直接安装上了,绷不住了。

2024-01-23 03:50:09 3773 3

原创 使用frq和云服务器进行内网穿刺

首先就是下载然后解压文件随后进入解压出来的文件夹然后分为两个部分,一个是云服务器部分,一个是要连接的主机部分。

2023-12-23 17:52:32 596

原创 关于如何使用cos加速腾讯云服务器的文件下载以及当做云盘使用或加速其他云盘下载

这里我讲的是其中coscmd的使用。

2023-12-22 11:12:52 549

原创 VM16安装win10虚拟机注意事项

要注意选择workstation16.x,不要选beta否则后续会出错后续选择放在单一文件夹较好记得选择bios启动

2023-12-21 19:07:36 513

原创 docker整体环境转移

最近配了个docker,配完才发现,有点小G,还得自己安装cuda,有点麻烦,如果选择重新在新的cuda镜像上安装,也不轻松,所以找了下资料,搞出来了docker整体转移首先介绍一个命令。

2023-12-15 20:52:24 610

原创 虚拟机强制关机移除后恢复

今天把自己物理机强制关机后出现了bug,显示虚拟机正在用,然后顺着点就把虚拟机移除了,实际上是因为lck文件给锁住了,详细请看。我们只需要找到路径,把它删掉,然后参考我那篇转移虚拟机再来一遍打开想要的虚拟机就行。

2023-12-15 20:17:19 489

原创 双系统安装显卡驱动

Nouveau是Nvidia显卡的开源驱动,但与官方Nvidia驱动相比,性能可能有所不足。为了安装Nvidia驱动,通常需要先禁用Nouveau。在安装任何新软件之前,最好先更新系统,以确保所有依赖都是最新的。Ubuntu提供了一个工具,可以帮助您安装适合您显卡的驱动。来配置和优化显卡设置。这对于确保最佳的人工智能模型训练和推理性能特别重要。或者,您也可以使用“软件和更新”程序中的“附加驱动”标签来安装驱动。安装完成后,重启计算机使驱动生效。安装驱动后,您可以运行。

2023-12-13 19:37:40 487

原创 变分和导数有什么关系

在实际应用中,变分法经常用于解决最优控制、物理学中的最小作用原理、以及工程学中的结构优化问题。而导数则是解决传统的最小化问题、研究函数行为等领域的基本工具。变分和导数都是分析学中衡量函数变化的工具,它们之间有密切的联系,但也有本质的区别。

2023-12-03 15:50:35 704

原创 计算函数的变分是什么意思

在计算函数的变分时,实际上是在考虑当函数 ( f ) 在其定义域内稍微变动时,泛函的值如何变化。数学上,这涉及到计算泛函导数或者说泛函的变分导数,它类似于常规导数,但是作用于函数空间而非数值空间。在物理学、工程学和数学的最优化问题中,变分法是寻找函数使得某个泛函(函数的函数)达到极值的过程。在图像处理中,总变分(TV)损失函数就是一个泛函,它在图像的所有像素值上定义,计算这个泛函的变分就是在寻找一个图像,使得总变分损失最小化,通常这会导致图像边缘被保留同时噪声被移除。

2023-12-03 15:47:58 502

原创 变分是什么

总变分损失是一种鼓励图像中相邻像素强度变化小(即图像更平滑)的正则化方法,但它也尝试保持图像中的重要结构,比如边缘和其他高对比度的特征。在图像处理和计算机视觉中,变分方法是指利用连续优化技术来解决问题,这些技术常常涉及到寻找函数的极值,特别是通过计算函数的变分或导数。在优化问题中,加入总变分损失作为正则项可以帮助减少噪声和伪影,这在生成对抗性补丁或其他图像重建任务中是有益的,因为它有助于生成更自然、更平滑、在视觉上更具有连续性的图像。

2023-12-03 15:44:05 877

原创 Layer Normalization是什么

层规范化(Layer Normalization)是一种在深度学习中常用的规范化技术,由 Jimmy Lei Ba 和 Jamie Ryan Kiros 等人于 2016 年提出。它的主要目的是帮助神经网络更快、更稳定地收敛。层规范化与其它规范化技术,如批量规范化(Batch Normalization)和组规范化(Group Normalization),有着相似的目的,但操作方式略有不同。:层规范化在单个样本的层级上进行操作,而非在批量(Batch)的层级。

2023-12-02 22:05:46 3478

原创 层规范化(Layer Normalization)和正则化(Regularization)

总结来说,层规范化是为了改善神经网络的训练过程,使其输入数据的分布更加标准化,而正则化是为了减少模型过拟合,提高其泛化能力。两者都是提高深度学习模型性能的重要工具,但用途和实现方式有所区别。层规范化(Layer Normalization)和正则化(Regularization)是两个不同的概念,尽管它们都在机器学习和深度学习中非常重要,但它们的目的和应用方式有所不同。

2023-12-02 21:59:30 718

原创 Group normalization是什么

在实际应用中,批量规范化依赖于较大的批量大小来计算精确的均值和方差,这在资源受限或需要使用小批量的情况下可能不是最优选择。指的是分组数量,这里分为一组意味着所有的特征通道都在同一组内,这实质上与层规范化(Layer Normalization)类似。在神经网络模型中,尤其是深度学习模型,规范化技术是关键的组成部分,因为它们有助于稳定训练过程,加快收敛速度,改善模型性能。:对于每个分组内的特征,GroupNorm 计算每个分组的均值和方差,并用这些统计数据来规范化分组内的特征。在您提供的代码中,使用了。

2023-12-02 21:57:06 847

原创 什么是先验知识和后验知识

在人工智能和机器学习的上下文中,先验知识可以帮助我们构建模型、设置参数,而后验知识则是在模型接收到数据并进行训练之后获得的,用于做出预测或进一步的决策。在网络安全领域,先验知识可以是关于网络攻击类型的一般理解,而后验知识可能是在分析了具体的网络流量或攻击事件后得到的关于攻击者策略的具体信息。后验知识是指在观察到一些数据之后,关于不确定参数的更新后的知识或信念。简单来说,先验概率是我们在观察到数据之前对某一不确定性的判断,而后验概率是我们在观察到数据之后对这一不确定性的更新判断。

2023-12-02 15:29:36 3552

原创 diffusion DreamBooth是什么

在网络安全领域,尽管 DreamBooth 主要是针对图像内容的生成,但其定制化的思想可以启发定制化安全解决方案的开发,例如为特定类型的网络攻击创建模拟数据,从而训练更加专精的威胁检测系统。需要注意的是,“DreamBooth”与“Diffusion Models”相结合时,通常涉及将大型生成模型如Stable Diffusion进行特定方向的微调,以便在保持其原有能力的同时赋予它新的生成特性。通过这种技术,可以通过提供少量特定主题的参考图像,微调预训练好的扩散模型,使其能够生成包含特定主题特征的新图像。

2023-12-02 02:55:12 464

原创 VAE的重参数化是什么

重参数化技巧的关键优势在于它允许随机变量的梯度通过变分参数传递,这使得可以使用基于梯度的优化方法(如SGD)来训练VAE。这是使VAE成为一个强大的生成模型的基础,因为它不仅可以生成新的数据点,而且还可以通过潜在空间学习到有意义的表示。在变分自编码器(VAE)中,重参数化技巧是解决优化问题的关键步骤。VAE旨在通过最大化数据的边缘对数似然来训练一个生成模型,但是这通常是不可行的,因为涉及到潜在变量的积分,这个积分通常是无法直接计算的。因此,VAE采用变分推断来最大化边缘对数似然的下界(ELBO)。

2023-12-02 02:49:36 1534

原创 几种攻击方式

Adversarial evasion(对抗性逃避)是指针对机器学习模型的一种攻击方式,旨在通过对输入数据进行微小但精心设计的修改,使模型产生错误的输出。这种攻击通常是有意识地利用模型的弱点,以便误导模型做出错误的决策。对抗性逃避攻击的目标是在人类视觉上保持不可察觉,但足够影响模型的性能。攻击者可能会对输入数据进行微小的扰动,这些扰动看似无害,但却足以使模型在处理这些数据时产生错误的输出。这种攻击对于图像分类、文本分类、语音识别等领域都是一种严重的挑战。

2023-11-30 20:23:31 1251

原创 怎么在jupyter_notebook中使用虚拟环境以及转为PDF

转成PDF就简单啦,CTRL+P另存为就可以。首先,打开终端,进入你想使用的虚拟环境。

2023-11-30 20:21:45 598

原创 对神经网络损失函数进行线性展开

在FGSM论文中提到对抗样本的线性观点提出了一种快速生成它们的方法。我们假设神经网络过于线性而无法抵抗线性对抗扰动。和maxout网络(Goodfellow等人,2013年3月)都被有意地设计成非常线性的表现形式,因此它们更容易优化。更多的非线性模型,如sigmoid网络,被仔细地调整,使其大部分时间处于非饱和状态(也就是在更线性的区域工作),原因也是为了便于优化。这种线性行为意味着,对线性模型进行便宜的、解析的扰动(即基于数学分析的简单扰动),也应该足以破坏神经网络的性能。让θ是模型的参数,x。

2023-11-22 01:54:05 781

原创 transformer

transformer纯用的attention来做encode和decode架构模型。

2023-11-09 03:59:53 48

原创 Physical Adversarial Attack Meets Computer Vision: A Decade Survey

我们提炼出发动物理对抗攻击的四个一般步骤。我们引入了一个新术语:对抗媒介。我们采取第一步系统地评估物理对抗攻击的性能,以对抗介质作为第一次尝试。提出的评估指标hiPAA包括六个方面:有效性、隐身性、鲁棒性、实用性、美观性和经济性提供跨任务类别的比较结果,以及有洞察力的观察和对未来研究方向的建议。在物理空间发动攻击时,对抗扰动必须有一个载体,即在载体内部存在对抗摄动。同时,载体对扰动也有影响,这个载体就被称之为媒介。

2023-11-03 23:02:31 224

原创 Visual Adversarial Attacks and Defenses in the Physical World: A Survey

当前计算机视觉中的对抗性攻击根据攻击形式的不同可分为数字攻击和物理攻击。物理攻击在现实世界中更加实用。在本文中,我们对计算机视觉中的物理对抗攻击和物理对抗防御进行了综述。为了建立一个分类,我们分别从攻击任务、攻击形式和攻击方法来组织当前的物理攻击。对于物理防御,我们从预处理、内处理和后处理三个方面对DNN模型进行分类,以实现对抗性防御的全覆盖。在此基础上,我们最后讨论了该研究领域面临的挑战,并进一步展望了未来的发展方向。

2023-10-29 23:40:45 120

原创 Linux关闭终端保留程序

如果你已经启动了一个进程,你可以使用。命令将其从终端分离。命令将其移动到后台。暂停当前进程,然后使用。

2023-10-17 20:52:48 139

原创 怎么从VMware上复制虚拟机到另一台电脑

转移虚拟机

2023-09-14 14:37:08 1706

原创 编译miracl

请看链接。

2023-09-14 13:51:22 98

原创 如何阅读一篇论文

来自沐神视频的笔记。

2023-09-04 21:49:04 26

原创 论AutoML的安全风险

神经架构搜索(Neural Architecture Search, NAS)是一种新兴的机器学习(ML)范式,能够自动搜索针对给定任务的模型,极大地简化了ML系统的开发,并推动了ML民主化的趋势。然而,人们对NAS产生的潜在安全风险知之甚少,考虑到在关键领域越来越多地使用NAS生成的模型,这一点令人担忧。这项工作是朝着弥合这一差距迈出的坚实的第一步。

2023-08-28 16:16:40 37

原创 scp传输文件到虚拟机

【代码】scp传输文件到虚拟机。

2023-08-06 01:53:41 310

原创 Improving Password Guessing via Representation Learning通过表示学习改进密码猜测

从非结构化数据中学习有用的表示是现代数据驱动方法的核心挑战之一,也是其推动力。深度学习已经展示了学习和利用这种表示的广泛优势。在本文中,我们提出了一种用于密码猜测的深度生成模型表示学习方法。我们展示了一个抽象的密码表示自然地提供了引人注目和通用的属性,在广泛研究和目前活跃的密码猜测领域开辟了新的方向。这些特性可以建立新的密码生成技术,既不可行,也不实用的现有的概率和非概率方法。在此基础上,我们提出:(1)条件密码猜测的一般框架,该框架可以生成任意偏差的密码;

2023-06-10 02:58:56 71

原创 PassGAN: A Deep Learning Approach for Password Guessing一种用于密码猜测的深度学习方法

最先进的密码猜测工具,如HashCat和John the Ripper,使用户能够根据密码哈希值每秒检查数十亿个密码。除了执行简单的字典攻击外,这些工具还可以使用密码生成规则扩展密码字典,例如单词的连接(例如“password123456”)和leet speak(例如,“password”变成“p4s5w0rd”)。尽管这些规则在实践中工作得很好,但将它们扩展为进一步的密码模型是一项艰巨的任务,需要专门的专业知识。

2023-06-09 04:52:36 564

原创 Password Guessing Using Random Forest使用随机森林猜密码

密码是目前使用最广泛的认证方法,猜测攻击是最有效的密码强度评估方法。然而,现有的密码猜测模型一般都是建立在传统统计或深度学习的基础上,目前还没有采用经典机器学习的密码猜测模型研究。为了填补这一空白,本文提供了一种全新的密码猜测技术路线。更具体地说,我们对密码字符进行重新编码,使一系列处理多类分类问题的经典机器学习技术(如随机森林、增强算法及其变体)能够用于密码猜测。

2023-06-01 19:17:36 157

原创 docker

【代码】docker。

2023-05-20 15:36:23 24

原创 几个网络传输协议

ESP协议则提供了加密和认证功能,它在AH协议的基础上增加了对数据的加密处理,保证了数据的机密性和完整性。AH协议的完整性验证范围为整个IP报文。总而言之,IPsec是一种学术化的网络安全协议套件,通过使用加密、认证和安全协议等技术手段,为IP网络中的数据传输提供了机密性、完整性和身份验证的保护,确保了通信的安全性和隐私性。总而言之,IPsec是一种学术化的网络安全协议套件,通过使用加密、认证和安全协议等技术手段,为IP网络中的数据传输提供了机密性、完整性和身份验证的保护,确保了通信的安全性和隐私性。

2023-05-15 23:30:49 32

原创 PPT制作注意事项

不能每一页都花,但是可以开头炫酷一些。

2023-05-08 00:59:36 30

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除