动态规划:以找零钱问题为例

动态规划:以找零钱问题为例

许多计算机程序被用于优化某些值,例如找到两点之间的最短路径,为一组数据点找到最佳拟合线,或者找到满足一定条件的最小对象集合。计算机科学家采用很多策略来解决这些问题。

在解决优化问题时,一个策略是动态规划

优化问题的一个经典例子就是在找零时使用最少的硬币。

1. 找零算法1.0

def recMC(coinValueList, change): # 函数接收2个参数:面值列表 和 要找零的金额
    minCoins = change # 初始全部用1元硬币(这里以 元 为最小单位)
    if change in coinValueList:
        # 检查是否为基本情况:尝试使用1枚硬币找零。
        return 1
    else:
        for i in [c for c in coinValueList if c <= change]: # 筛选出小于当前找零金额的硬币面值
            numCoins = 1 + recMC(coinValueList, change - i) # 将找零金额减去所选的硬币面值,并将所需的硬币数加1,以表示使用了1枚硬币
            if numCoins < minCoins:
                numCoins = numCoins
    return minCoins # 返回所需要的最小硬币数

该算法将大量时间浪费在重复计算已有的结果上。

2. 添加查询表后的找零算法1.1

减少计算量的关键在于记住已有的结果。简单的做法是把最少硬币数的计算结果存储在一张表中,并在计算新的最少硬币数之前,检查结果是否已在表中。如果是,就直接使用结果,而不是重新计算。

def recDC(coinValueList, change, knownResults):
    minCoins = change
    if change in coinValueList:
        knownResults[change - 1] = 1
        return 1
    elif knownResults[change - 1] > 0: 
        # 检查查询表中是否已经有某个找零金额对应的最少硬币数。(列表从0开始,故对应为 change - 1 
        # 如果没有,就递归地计算并且把得到的最少硬币数结果存在表中。
        return knownResults[change - 1]
    else:
        for i in [c for c in coinValueList if c <= change]:
            numCoins = 1 + recDC(coinValueList, change - i, knownResults)
            if numCoins < minCoins:
                minCoins = numCoins
                knownResults[change - 1] = minCoins    
    return minCoins

>>> recDC([1, 5, 10, 25], 63, [0]*63)
6

这种算法通过 记忆化(也叫缓存) 的方法而非 动态规划 进行优化,列表中有大量空间是空白的。

3. 运用动态规划进行的找零算法2.0

动态优化:更加系统化:从1元找零开始,然后系统地一直计算到所需的找零金额。这样做可以保证在每一步都已经知道任何小于当前值的找零金额所需的最少硬币数。

def dpMakeChange(coinValueList, change, minCoins):
    for cents in range(1, change + 1):
        coinCount = cents
        for j in [c for c in coinValueList if c <= cents]:
            if minCoins[cents - j] + 1 < coinCount:
                coinCount = minCoins[cents - j] + 1
                minCoins[cents] = coinCount
    return minCoins[change]

注:这里的动态规划实际上不是递归

要进行真正的找零,不光要提供minCoins,还需要记录所用的硬币。

4. 运用动态规划进行的找零算法2.1

通过记录minCoins表中每一项所加的硬币,可以轻松扩展dpMakeChange,从而记录所用的硬币。如果知道上一次加的硬币,便可以减去其面值,从而找到表中前一项,并通过它知晓之前所加的硬币。

def dpMakeChange(coinValueList, change, minCoins, coinsUsed):
    for cents in range(change + 1):
        coinCount = cents
        newCoin = 1
        for j in [c for c in coinValueList if c <= cents]:
            if minCoins[cents - j] + 1 < coinCount:
                coinCount = minCoins[cents - j] + 1
                newCoin = j
        minCoins[cents] = coinCount
        coinsUsed[cents] = newCoin
    return (minCoins[change], printCoins(coinsUsed, change))

def printCoins(coinsUsed, change):
    coin = change
    CoinSum = [] # 记录需要用到哪些硬币
    while coin > 0:
        thisCoin = coinsUsed[coin]
        CoinSum.append(thisCoin)
        coin = coin - thisCoin
    return CoinSum

>>> c1 = [1, 5, 10, 21, 25]
>>> coinsUsed = [0] * 53
>>> minCoins = [0] * 53
>>> dpMakeChange(c1, 52, minCoins, coinsUsed)
(3, [10, 21, 21])
>>> for i in range(1, len(minCoins)):
        print("找零 %2d 元所需的最少硬币数为:%2d," % (i, minCoins[i]), "具体为 " + str(printCoins(coinsUsed, i)))

找零  1 元所需的最少硬币数为: 1, 具体为 [1]
找零  2 元所需的最少硬币数为: 2, 具体为 [1, 1]
找零  3 元所需的最少硬币数为: 3, 具体为 [1, 1, 1]
找零  4 元所需的最少硬币数为: 4, 具体为 [1, 1, 1, 1]
找零  5 元所需的最少硬币数为: 1, 具体为 [5]
找零  6 元所需的最少硬币数为: 2, 具体为 [1, 5]
找零  7 元所需的最少硬币数为: 3, 具体为 [1, 1, 5]
找零  8 元所需的最少硬币数为: 4, 具体为 [1, 1, 1, 5]
找零  9 元所需的最少硬币数为: 5, 具体为 [1, 1, 1, 1, 5]
找零 10 元所需的最少硬币数为: 1, 具体为 [10]
找零 11 元所需的最少硬币数为: 2, 具体为 [1, 10]
找零 12 元所需的最少硬币数为: 3, 具体为 [1, 1, 10]
找零 13 元所需的最少硬币数为: 4, 具体为 [1, 1, 1, 10]
找零 14 元所需的最少硬币数为: 5, 具体为 [1, 1, 1, 1, 10]
找零 15 元所需的最少硬币数为: 2, 具体为 [5, 10]
找零 16 元所需的最少硬币数为: 3, 具体为 [1, 5, 10]
找零 17 元所需的最少硬币数为: 4, 具体为 [1, 1, 5, 10]
找零 18 元所需的最少硬币数为: 5, 具体为 [1, 1, 1, 5, 10]
找零 19 元所需的最少硬币数为: 6, 具体为 [1, 1, 1, 1, 5, 10]
找零 20 元所需的最少硬币数为: 2, 具体为 [10, 10]
找零 21 元所需的最少硬币数为: 1, 具体为 [21]
找零 22 元所需的最少硬币数为: 2, 具体为 [1, 21]
找零 23 元所需的最少硬币数为: 3, 具体为 [1, 1, 21]
找零 24 元所需的最少硬币数为: 4, 具体为 [1, 1, 1, 21]
找零 25 元所需的最少硬币数为: 1, 具体为 [25]
找零 26 元所需的最少硬币数为: 2, 具体为 [1, 25]
找零 27 元所需的最少硬币数为: 3, 具体为 [1, 1, 25]
找零 28 元所需的最少硬币数为: 4, 具体为 [1, 1, 1, 25]
找零 29 元所需的最少硬币数为: 5, 具体为 [1, 1, 1, 1, 25]
找零 30 元所需的最少硬币数为: 2, 具体为 [5, 25]
找零 31 元所需的最少硬币数为: 2, 具体为 [10, 21]
找零 32 元所需的最少硬币数为: 3, 具体为 [1, 10, 21]
找零 33 元所需的最少硬币数为: 4, 具体为 [1, 1, 10, 21]
找零 34 元所需的最少硬币数为: 5, 具体为 [1, 1, 1, 10, 21]
找零 35 元所需的最少硬币数为: 2, 具体为 [10, 25]
找零 36 元所需的最少硬币数为: 3, 具体为 [1, 10, 25]
找零 37 元所需的最少硬币数为: 4, 具体为 [1, 1, 10, 25]
找零 38 元所需的最少硬币数为: 5, 具体为 [1, 1, 1, 10, 25]
找零 39 元所需的最少硬币数为: 6, 具体为 [1, 1, 1, 1, 10, 25]
找零 40 元所需的最少硬币数为: 3, 具体为 [5, 10, 25]
找零 41 元所需的最少硬币数为: 3, 具体为 [10, 10, 21]
找零 42 元所需的最少硬币数为: 2, 具体为 [21, 21]
找零 43 元所需的最少硬币数为: 3, 具体为 [1, 21, 21]
找零 44 元所需的最少硬币数为: 4, 具体为 [1, 1, 21, 21]
找零 45 元所需的最少硬币数为: 3, 具体为 [10, 10, 25]
找零 46 元所需的最少硬币数为: 2, 具体为 [21, 25]
找零 47 元所需的最少硬币数为: 3, 具体为 [1, 21, 25]
找零 48 元所需的最少硬币数为: 4, 具体为 [1, 1, 21, 25]
找零 49 元所需的最少硬币数为: 5, 具体为 [1, 1, 1, 21, 25]
找零 50 元所需的最少硬币数为: 2, 具体为 [25, 25]
找零 51 元所需的最少硬币数为: 3, 具体为 [1, 25, 25]
找零 52 元所需的最少硬币数为: 3, 具体为 [10, 21, 21]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值