上海月赛 : 火柴数字(二)(暴力搜索,DP)

本文介绍了一道关于使用n根火柴表示最大m倍数数字的编程问题,通过暴力搜索和动态规划两种方法进行解决。动态规划策略利用状态转移方程和快速幂技巧,有效地降低了时间复杂度,找到满足条件的最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

火柴数字(二)

内存限制: 256 Mb

时间限制: 1000 ms

题目描述

使用火柴表示 0 到9 的方法如下:

在这里插入图片描述

给定两个参数 n 与 m,请用 n 根火柴(不必全部用完),组成一个尽量大的数字,并且它是 m 的倍数。

输入格式

两个正整数:n 与 m。

输出格式

单个自然数:表示满足要求的最大值,由于 00 是任何正整数的倍数,可以保证答案一定存在。

数据范围
  • 对于 50% 的数据, 6 ≤ n ≤ 20 6\leq n\leq 20 6n20
  • 对于 100% 的数据, 6 ≤ n ≤ 3000 ; 10 ≤ m ≤ 3000 6\leq n\leq 3000;10\leq m\leq 3000 6n3000;10m3000
样例数据

输入:

6 3

输出:

111
思路一 :暴力搜索 50 分

递归回溯就好了。

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

int a[10] = {6,2,5,5,4,5,6,3,7,6};
int n, m; // n根火柴,%m ==0。
int cnt=0;
int ans =0;
void dfs(int res, int sum) // 剩余火柴数, 总数。
{
    if(sum%m == 0 && res >=0)
    {
        // printf("%d ",sum);
        ans = max(ans, sum);
        // return;这个地方不能直接返回。 
    }
    if(res == n)
    {
        for (int i = 1; i <= 9; i ++ )
        {
            sum = sum *10 +i;
            res -= a[i];
            dfs(res, sum);
            res+=a[i];
            sum = (sum -i)/10;
            
        }
    } 
    else if (res < n && res>=0)
    {
        for (int i = 0; i <= 9; i ++ )
        {
            sum = sum *10 +i;
            res -= a[i];
            dfs(res, sum);
            res+=a[i];
            sum = (sum -i)/10;
        }
        
    }
    
}

int main()
{
    cin >> n >> m;
    
    dfs(n,0);
    
    cout << ans << endl;
    
}
思路二 : 动态规划100分

算法思路:
1、该题是《火柴数字(一)》的升级,依然尝试动归,题意要求:用不超过n根火柴拼出一个最大的自然数,使其模m为0
2、先考虑最大的自然数:位数越长越优,位数一定的情况下从高位至低位,各位上的数越大越优。火柴不超过n根,最长位数显然只可能为n/2(全由数字“1”构成),最短位数为1(即数字0)。
又,该数模m为0:若能先求得符合题意的数最长位数为len且模m为0,再想法构造出这个数就容易了,即只需从高位至低位枚举9~0即可。
3、描述状态 f [ j ] [ k ] f[j][k] f[j][k]表示拼成长为j(位数)模m为k的数所需要的最少火柴根数。
4、状态转移:若 f [ j ] [ k ] f[j][k] f[j][k]已知,考虑在此长为j的数X后加入数字t=9~0(细节:最高位不能为0,特判X为0的情形),则有:

在这里插入图片描述

f [ j + 1 ] [ ( k ∗ 10 + t ) % m ] = m i n f [ j ] [ k ] + g [ t ] f[j+1][(k*10+t)\%m]=min{f[j][k]}+g[t] f[j+1][(k10+t)%m]=minf[j][k]+g[t]
g[t] 表示数字t(9~0)所需的火柴根数。
边界: m>=10, f [ 1 ] [ t ] = g [ t ] ; t = 0...9 ; f [ 0 ] [ 0 ] = 0 f[1][t]=g[t]; t=0...9; f[0][0]=0 f[1][t]=g[t];t=0...9;f[0][0]=0 其余初始化为极大值
f [ j ] [ k ] f[j][k] f[j][k]该过程的时间复杂度:O(10n*m)
5、求符合题意的最长位数len:倒着遍历j=n/2~1,满足 f [ j ] [ 0 ] < = n f[j][0]<=n f[j][0]<=n则退出,即len=j。
6、 f [ l e n ] [ 0 ] f[len][0] f[len][0]从高位至低位构造符合题意的数:枚举位数j=len…1,若该数第j位取t=9…0,可拆分为以下两部分:最高位数t+后j-1位的数X

初始k=0,若该位取t满足: f [ j − 1 ] [ k k ] + g [ t ] < = n f[j-1][kk]+g[t]<=n f[j1][kk]+g[t]<=n,其中kk表示X%m(用calc求解),则t为该位最大可能取值,直接输出该位结果,更新k、n。
函数calc(t, j, k):用于求解等式 ( t ∗ 1 0 j − 1 % m + k k ) % m = k (t * 10^{j-1}\%m+kk)\%m=k (t10j1%m+kk)%m=k中的kk。(快速幂)
该过程时间复杂度O(10nlgn)
7、如此,时间复杂度为O(10n*m+10nlgn),得解。

// 火柴数字https://iai.sh.cn/contribution/2160

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 3005;
const int M = 3005;
/*动态规划+快速幂*/
int n, m, f[N][M], g[10] = {6, 2, 5, 5, 4, 5, 6, 3, 7, 6}; //数字0~9所需火柴棍数
int calc(int t, int j, int k)
{ //快速幂计算kk:(t*10^j+kk)%m=k
    int x, a;
    x = 1, a = 10; // a^j%m
    while (j)
    {
        if (j % 2)
            x = x * a % m;
        a = a * a % m, j >>= 1;
    }
    x = t * x % m;
    return (k + m - x) % m;
}
int main()
{
    // freopen("match.in","r",stdin);
    // freopen("match.out","w",stdout);
    cin >> n >> m; // n根火柴 数字m
    memset(f, 0x7f, sizeof(f));
    f[0][0] = 0;
    for (int k = 0; k < 10; k++)
        f[1][k] = g[k]; //边界
    int len = 1;
    for (int j = 1; j <= n / 2; j++)
    {                               //长为j位
        for (int k = 0; k < m; k++) //模m为k
            for (int t = 9; t >= 0; t--)
            { //最低位取t
                if (j == 1 && k == 0)
                    break;
                int i = (k * 10 + t) % m; //长为j+1模m为i
                f[j + 1][i] = min(f[j + 1][i], f[j][k] + g[t]);
            }
    }
    for (int j = n / 2; j >= 1; j--)
        if (f[j][0] <= n)
        { //满足题意的数的最长位数
            len = j;
            break;
        }
    if (len == 1)
    {
        cout << 0;
        return 0;
    }
    int i, k;
    i = k = 0; //由f[len][0]来构造答案
    for (int j = len; j >= 1; j--)
    { //从高位->低位构造出长为len的最大的自然数
        for (int t = 9; t >= 0; t--)
        { //求出kk:(t*10^(j-1)+kk)%m=k
            int kk = calc(t, j - 1, k);
            if (g[t] + f[j - 1][kk] <= n)
            {                      //该位取t合法
                cout << t;         //逐位输出
                k = kk, n -= g[t]; //计入答案、更新k和剩余火柴数n
                break;
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值