火柴数字(二)
内存限制: 256 Mb
时间限制: 1000 ms
题目描述
使用火柴表示 0 到9 的方法如下:
给定两个参数 n 与 m,请用 n 根火柴(不必全部用完),组成一个尽量大的数字,并且它是 m 的倍数。
输入格式
两个正整数:n 与 m。
输出格式
单个自然数:表示满足要求的最大值,由于 00 是任何正整数的倍数,可以保证答案一定存在。
数据范围
- 对于 50% 的数据, 6 ≤ n ≤ 20 6\leq n\leq 20 6≤n≤20;
- 对于 100% 的数据, 6 ≤ n ≤ 3000 ; 10 ≤ m ≤ 3000 6\leq n\leq 3000;10\leq m\leq 3000 6≤n≤3000;10≤m≤3000;
样例数据
输入:
6 3
输出:
111
思路一 :暴力搜索 50 分
递归回溯就好了。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int a[10] = {6,2,5,5,4,5,6,3,7,6};
int n, m; // n根火柴,%m ==0。
int cnt=0;
int ans =0;
void dfs(int res, int sum) // 剩余火柴数, 总数。
{
if(sum%m == 0 && res >=0)
{
// printf("%d ",sum);
ans = max(ans, sum);
// return;这个地方不能直接返回。
}
if(res == n)
{
for (int i = 1; i <= 9; i ++ )
{
sum = sum *10 +i;
res -= a[i];
dfs(res, sum);
res+=a[i];
sum = (sum -i)/10;
}
}
else if (res < n && res>=0)
{
for (int i = 0; i <= 9; i ++ )
{
sum = sum *10 +i;
res -= a[i];
dfs(res, sum);
res+=a[i];
sum = (sum -i)/10;
}
}
}
int main()
{
cin >> n >> m;
dfs(n,0);
cout << ans << endl;
}
思路二 : 动态规划100分
算法思路:
1、该题是《火柴数字(一)》的升级,依然尝试动归,题意要求:用不超过n根火柴拼出一个最大的自然数,使其模m为0。
2、先考虑最大的自然数:位数越长越优,位数一定的情况下从高位至低位,各位上的数越大越优。火柴不超过n根,最长位数显然只可能为n/2(全由数字“1”构成),最短位数为1(即数字0)。
又,该数模m为0:若能先求得符合题意的数最长位数为len且模m为0,再想法构造出这个数就容易了,即只需从高位至低位枚举9~0即可。
3、描述状态:
f
[
j
]
[
k
]
f[j][k]
f[j][k]表示拼成长为j(位数)模m为k的数所需要的最少火柴根数。
4、状态转移:若
f
[
j
]
[
k
]
f[j][k]
f[j][k]已知,考虑在此长为j的数X后加入数字t=9~0(细节:最高位不能为0,特判X为0的情形),则有:
f
[
j
+
1
]
[
(
k
∗
10
+
t
)
%
m
]
=
m
i
n
f
[
j
]
[
k
]
+
g
[
t
]
f[j+1][(k*10+t)\%m]=min{f[j][k]}+g[t]
f[j+1][(k∗10+t)%m]=minf[j][k]+g[t]
g[t] 表示数字t(9~0)所需的火柴根数。
边界: m>=10,
f
[
1
]
[
t
]
=
g
[
t
]
;
t
=
0...9
;
f
[
0
]
[
0
]
=
0
f[1][t]=g[t]; t=0...9; f[0][0]=0
f[1][t]=g[t];t=0...9;f[0][0]=0 其余初始化为极大值
求
f
[
j
]
[
k
]
f[j][k]
f[j][k]该过程的时间复杂度:O(10n*m)
5、求符合题意的最长位数len:倒着遍历j=n/2~1,满足
f
[
j
]
[
0
]
<
=
n
f[j][0]<=n
f[j][0]<=n则退出,即len=j。
6、由
f
[
l
e
n
]
[
0
]
f[len][0]
f[len][0]从高位至低位构造符合题意的数:枚举位数j=len…1,若该数第j位取t=9…0,可拆分为以下两部分:最高位数t+后j-1位的数X
初始k=0,若该位取t满足:
f
[
j
−
1
]
[
k
k
]
+
g
[
t
]
<
=
n
f[j-1][kk]+g[t]<=n
f[j−1][kk]+g[t]<=n,其中kk表示X%m(用calc求解),则t为该位最大可能取值,直接输出该位结果,更新k、n。
函数calc(t, j, k):用于求解等式
(
t
∗
1
0
j
−
1
%
m
+
k
k
)
%
m
=
k
(t * 10^{j-1}\%m+kk)\%m=k
(t∗10j−1%m+kk)%m=k中的kk。(快速幂)
该过程时间复杂度O(10nlgn)
7、如此,时间复杂度为O(10n*m+10nlgn),得解。
// 火柴数字https://iai.sh.cn/contribution/2160
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 3005;
const int M = 3005;
/*动态规划+快速幂*/
int n, m, f[N][M], g[10] = {6, 2, 5, 5, 4, 5, 6, 3, 7, 6}; //数字0~9所需火柴棍数
int calc(int t, int j, int k)
{ //快速幂计算kk:(t*10^j+kk)%m=k
int x, a;
x = 1, a = 10; // a^j%m
while (j)
{
if (j % 2)
x = x * a % m;
a = a * a % m, j >>= 1;
}
x = t * x % m;
return (k + m - x) % m;
}
int main()
{
// freopen("match.in","r",stdin);
// freopen("match.out","w",stdout);
cin >> n >> m; // n根火柴 数字m
memset(f, 0x7f, sizeof(f));
f[0][0] = 0;
for (int k = 0; k < 10; k++)
f[1][k] = g[k]; //边界
int len = 1;
for (int j = 1; j <= n / 2; j++)
{ //长为j位
for (int k = 0; k < m; k++) //模m为k
for (int t = 9; t >= 0; t--)
{ //最低位取t
if (j == 1 && k == 0)
break;
int i = (k * 10 + t) % m; //长为j+1模m为i
f[j + 1][i] = min(f[j + 1][i], f[j][k] + g[t]);
}
}
for (int j = n / 2; j >= 1; j--)
if (f[j][0] <= n)
{ //满足题意的数的最长位数
len = j;
break;
}
if (len == 1)
{
cout << 0;
return 0;
}
int i, k;
i = k = 0; //由f[len][0]来构造答案
for (int j = len; j >= 1; j--)
{ //从高位->低位构造出长为len的最大的自然数
for (int t = 9; t >= 0; t--)
{ //求出kk:(t*10^(j-1)+kk)%m=k
int kk = calc(t, j - 1, k);
if (g[t] + f[j - 1][kk] <= n)
{ //该位取t合法
cout << t; //逐位输出
k = kk, n -= g[t]; //计入答案、更新k和剩余火柴数n
break;
}
}
}
return 0;
}