我对题目的理解,将数字序列放在区间(0,m+1)上然后挖去存在于【l,r】里的数字,最后剩下的数字不递减,
所以存在一个最小的r,只要找到这个r就能够保证这之后的r都是符合条件的。
#include <iostream>
#include <cstring>
#include <algorithm>
#include <assert.h>
using namespace std;
const int N = 100000;
int n;
int m;
int nums[N];
bool check(int lo, int hi)
{
int pre = -1;
for (int i = 0; i < n; i ++)
{
int x = nums[i];
if (x < lo || hi < x)
{
if (pre > x)
return false;
pre = x;
}
}
return true;
}
//用check函数来检查是否不为负数
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> m;
cin >> n;
for (int i = 0; i < n; i ++)
cin >> nums[i];
int res = 0;
for (int i = 1; i < m + 1; i ++) //小美选的数字
{
//----小团选的数字。寻找符合提交的最左端
int l = i;
int r = m + 1;
while (l < r)
{
int mid = l + (r - l) / 2;
if (check(i, mid) == true)
//注意这里是i而不是l,也就是意味着下界其实是一直不变的
r = mid;
//找到了,说明原来的右端是符合条件的,
else
l = mid + 1;
//没有找到,为什么要移动左端呢?
//其实只是在该区间内存在更小的数字,右边界偏小,需要向右移动,自然是更改l的值了
}
if (l == m + 1)
//标识上下边界重合,都到了区间的最右端,循环结束
break;
res += (m - l + 1);
//l == r,此时左右边界重合,找到了最小的右边界,这个时候利用左闭右开区间来求这个区间内含有的数字的个数。
}
cout << res << endl;
return 0;
}
作者:Hanxin_Hanxin
链接:https://leetcode-cn.com/problems/yqj8Su/solution/cpython3java-1fen-xi-er-fen-zui-zuo-duan-9hd3/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。